6 Overview of Numerical Methods
in Environmental Modeling

Up to this point, this book has dealt primarily with idealized models of environmeny
systems. These models assume uniform geometry, constant system properties, anq
inputs and boundary conditions that are either constant over time or are describeg
by special time-varying equations such as exponential or sinusoidal functions, The
environmental system is represented in many of these models by a single reactor, sy
as a 0D completely stirred tank reactor, a 1D plug-flow reactor, or a 2D advective-
dispersive reactor, with the reaction kinetics usually assumed to be first order. Fop
these idealized conditions, analytical solutions, that is, closed-form equations, cap
often be derived for the model state variables: concentrations, mass fluxes, or (as
introduced in Chapter 13) human exposure and risk. However, when models are
developed to provide more detailed and realistic representations of systems exhibiting
spatial heterogeneity, temporal variation, and nonlinear reaction kinetics, analytical
solutions are generally not available. Numerical solution methods are then needed.

Numerical methods are commonly used to integrate the mass-balance differen-
tial equation for contaminant concentration C, with the objective of determining the
concentration C at a specific location (x, y, z) orata specific time £. When the deriva-
tive of C appears in the equation with respect to only one variable, usually time (i,
dC /dt) or a single spatial dimension (such as dC/dx), the equation is referred to as
an ordinary differential equation, or ODE. A set of coupled equations for multiple
contaminants (e.g., describing dC1/dt, dCy/dt, etc.) is a system of ordinary differ-
ential equations. Section 6.1 presents methods for the numerical solution of systems
of ODEs. When the concentration derivatives appear in more than one dimension,
the equations are referred to as partial differential equations, or PDEs. Methods for
solving PDEs, which are usually implemented over a spatial system of grid points
or cells, are presented in Section 6.2. This section also presents methods for solving
systems of linear algebraic equations that arise in numerical techniques for PDES.
Simultaneous nonlinear algebraic equations are often required to describe equilib-
rium chemistry in environmental models; numerical methods for these systems are
described in Section 6.3. The numerical methods described in this chapter are used
to develop deterministic models of pollutant transport employing point estimates for
various input parameters that appear in the mass-balance equations, for example, fluid
flow rates or reaction rate constants. Chapter 7 provides an introduction to randor
variables and random processes, which are used in stochastic models to simulate both
variability in the environment and the uncertainty of model predictions.
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This chapter is intended to provide only an overview of the computational methods
i onﬁidcmd necessary for understanding many of the full-scale models presented in
:ubseql‘c“l chapters. Texts devoted to numerical methods (e.g., Chapra and Canale,
1988) provide Tnm'c delaf]ed discussions. Press et al. (1994) explain and outline
computer algorithms for implementing a wide variety of numerical techniques. A
ore in-depth study of these techniques is recommended for anyone developing

mudei“ in which they are used or for a full appreciation of the methods used by others.

6.1 ORDINARY DIFFERENTIAL EQUATIONS

consider the mass-balance equation for the indoor air pollution problem depicted in
Chapter 1 (Fig. 1.5), as given by Eq. (1.8):
dc;

V=" = (@) Ciamy — (Qow) Ci + S = kVC; 1)

where C; represents the pollutant concentration within a well-mixed indoor air com-
partment, i. Because the indoor air compartment is well-mixed, C; is independent of
location and varies as a function of time only, that is, C; = C;(1); Ci qm represents
the influent concentration entering the air compartment from the surroundings. Di-
viding both sides of the equation by the volume of the room, V, the equation for the
concentration derivative is obtained:

dci (Qin) Ci amb + S Qout
— = ’ - k)G
dt Vv Vv *

(6.2)

Equation (6.2) is a first-order ODE. The order of the ODE refers to the order of the
derivative. For example, an equation with derivatives up to and including d*C; /dt*
is a second-order differential equation. We limit ourselves in this section to solutions
for first-order ODEs. Methods for solving higher-order ODEs are described elsewhere
(Hoffman, 1992, p. 296).

For a given set of inputs that define the rhs of Eq. (6.2), we seek a procedure
for moving from a known value of C; at time f to an unknown value of C; at time
t+ Ar.! This problem is depicted in Figure 6.1, which shows a true (but unknown to
us) value of C; (¢) that we are attempting to reproduce through numerical integration.
Figure 6.1a shows perhaps the simplest logical solution to this problem (the one you
might come up with yourself if you were stuck on a deserted island with no previous
knowledge of numerical methods): Use the known slope of the curve at time ¢ to
extrapolate the value forward to time ¢ + Af:

Ci(t + A1) = Ci(t) +dC;/dt); At 6.3)

I s
Th1§ can be solved for analytically in the case of Eq. (6.2). In the more general case of nonlinear kinetics,
Multiple contaminants, and the like, it usually cannot.
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Figure 6.1 Numerical integration of unknown function C; (¢) using (a) the Euler method

(b) the predictor-corrector method.

and
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Lation (6.3) is known as the Euler or Euler—Cauchy formula. As indicated in Figure
6.1 Eq- (6.3) is likely to introduce some etror, especially when the true solution is
; hly ponlinear and when it is implemented over large time steps, Af.
hiEHow might the error indicated in Figure 6.1a be reduced? Figure 6.1b suggests
p option- The derivative could be recomputed at time 1 + Af, and then the linear
cxuapulélliﬂﬂ from time ¢ recomputed using a slope that’ is the average .of the initial
deri\'ﬂ""’c at time ¢ and that subsequently computed at time t + At. This procedure,
s the predictor—corrector method, is implemented in two steps:

gnown @
. " dC;
Predictor Cit+an =G @) + . At
t
dc; dc; (6.4)
Tar |, dr .
Corrector Cit+ A =C; () + ____’___2___'_+—AI—C—- At

The first predictor step is identical to the Euler method in Eq. (6.3). Note that when
multiple model outputs, C;(f), j = 1,...,J,are required either to model J coupled
companments across which a contaminant s distributed or the coupled behavior of
J chemical pollutants within a single compartment, a System of J ODEs is obtained.
In this case, the predictor step is implemented for each of the J state variables to
compute each of the C7 (1), before computing the correctors. The second corrector
step yields modified estimates, which are expected to be closer to the true values
than are the predictors. However, they are still not completely accurate, due to the
nonlinearity of the true solutions and the fact that the derivatives at time (# + At) are
computed using only estimates of the C;(t + AL)’s.

A more formal approach for describing the accuracy of numerical integration
recognizes that two types of error can oceur in the transition from time f to t+At. The
first, depicted in Figure 6.1, is known as truncation error. This is the inherent error of
the method. For the Euler method, the truncation error is proportional to (A)?, the
fime step raised to the second power. As such, cutting the time step in half reduces
the error by a factor of 4. For the predictor—corrector method, the truncation error
is proportional to (A1)?, so that reducing the time step by a factor of 2 reduces the
error by a factor of 8. More accurate integration is therefore expected using smaller
time steps and the predictor—corrector method, than can be achieved with the Euler
method.

If less truncation error Occurs with smaller time Steps, why not use smaller and
smaller values of At until the desired accuracy is achieved? A first, practical reason
is that the computation time increases as At is reduced. (More calculations are needed
tointegrate over the same time interval.) A second, more fundamental reason involves
the second type of error: round-off error. The second terms that are added to C;(t)on
the ths of Eq. (6.3) or (6.4) become smaller and smaller as the time step is reduced.
With a limited number of significant digits used for the calculation by the computer
{typically 8, or 16 if double precision is used), a greater relative error can occur
as round-off eliminates a higher fraction of the addend. While the truncation error
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is reduced as At is made smaller, the round-off error increases. Furthermore, this
increased relative error is repeated over more, shorter time steps. The net effect of
both truncation error and round-off error over many time steps is referred to as the
overall propagation error.

How can you tell whether a numerical integration is accurate? You do not know the
true solution (i.e., from an analytical solution); if you did, you would use it! Howeye;
you might be able to simplify your model to a special case, for example, with constanE
spatial and temporal properties, simplified kinetics, and the like, for which a knowy,
analytical solution is available. The numerical method should be able to reasonably
reproduce the known solution for this special case. Comparison of numerical soly.
tions to known analytical solutions for simplified, idealized cases is thus a commop
and important first step in testing for accuracy. It does not guarantee that the numerica]
solution will be accurate for the real, more complex cases that you really care about,
However, it does provide some degree of comfort and assurance. If the model can-
not reproduce the analytical solution for simplified cases, then something is clearly
wrong—either inherently with the method or in its computer implementation.

A second way to diagnose the accuracy of a numerical integration procedure
is to evaluate the model with varying time steps. Initially, the time step is chosen
based on the time scales of variation in model inputs and responses. For example,
a model with variations in emissions, transport terms, reaction rates, and resulting
concentrations over time scales of minutes and hours will typically require time steps
of seconds for numerical integration; models with variations over weeks, months,
and years typically require time steps of days or fractions of a day. A high estimate
of the time step is first selected, the model executed, and the results recorded. A
second, smaller time step (e.g., one-half of the value of At used for the first test
run) is used and the results compared to those from the first case. If the initial time
step was indeed too large, the results should be different. Successively smaller time
steps are tested and the differences between runs should diminish, until reducing
the time step further no longer yields a change in the results. This indicates that a
sufficiently small time step has been selected and that accurate numerical integration
has most likely been achieved. Eventually, reducing the time step further should
once again yield changes in model predictions, as round-off error comes into play.
The assumption is that initially reductions in At act to reduce the truncation error
and that round-off error does not become significant until the time step is reduced
to a very small value. This is usually the case, especially if the initial time step
is chosen to be “conservatively large” for the problem under consideration. Other
methods are available for diagnosing model accuracy, such as checking the model
for mass balance. These and other quality control procedures for model evaluation
are illustrated in the examples presented in this chapter and discussed further in
Chapter 14.

The Euler and the predictor—corrector methods are among the simplest of the avail-
able procedures for numerical integration of ODEs but are not especially accurate. For
some problems, they can yield unstable results. Instability occurs when the results
deviate so far from the correct values that wildly diverging or oscillating predictions
are made. Instability is not easy to define, but you know it when you see it. More
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jisticated numerical methods may be able to maintain stability and achieve sig-
antly greater accuracy. Some of these methods utilize model results prior to ¢

sop!
nific . . e

,_at time f — At and 1 — 2 At) in making the transition from ¢ to 7 + At. Use
of these multiple values allows the higher-order shape and associated derivatives of

o function to be taken into consideration. While such multistep methods are more

th S .
accurate, they are not self-starting, since at time ¢ = 0, values at7 — Az and 1 — 2 At
are not available. A self-starting method is thus needed for the initial calculations over

he first few time steps. Some of the stability and accuracy of multistep methods can
pe achieved by self-starting methods if each time step is broken up into partial steps.
Among the most widely used of these partial step procedures is the Runge-Kutta
method.

The Runge—Kutta procedure is actually a family of methods, each with different
«order” depending on how many partial steps are utilized within each time step. The
fourth-order Runge-Kutta method is especially popular, due to its very high accuracy
and stability, yet relative simplicity. The accuracy of the fourth-order Runge—Kutta
method is related to that of Simpson’s method for numerical integration, illustrated
in Figure 6.2. An accurate estimate of A = [ f(x) dx (i.e., the shaded area under the
curve in Fig. 6.2) is computed using Simpson’s rule as follows:

A= (Ax/6)[f(a) +4f b))+ f ()] (6.5)

Where a, b, and ¢ are evenly-spaced points in the interval (x, x + Ax). In numerical
solution of chemical mass-balance ODEs, the function f(x) corresponds with the
time derivative dC;/dt that is integrated over a time step, At, to determine the
unknown function C;(1).

J®

Jx)

Area=A

Ax=c-a

Figure 6.2 Formulation of Simpson’s method for integration [Eg. (6.5)].
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As in Simpson’s method, the fourth-order Runge-Kutta method similarly divigeg
the time step in half and computes values of C(f) at the next time step from th,
derivatives, Iy, F,, F3, and Fy, as:

Ci(t + A1) = Ci(t) + L [F + 2F) +2F; + ] 6.6)
where
. [dac
r; =| — At
| 4t | c=co)
. [dc
Fl = At
| 9t i ar2),0=Ci(0+05 F
e
Fl= At
LAt ipan,ci=ci0+05 F

Fi=| % A
=\ ’
L I+AI,C,-=C,-(I)+F3'

As with the predictor—corrector method, when the Runge—Kutta method is applied
to a system of ODEs for a suite of constituents, the F;’s must be computed for each
constituent j = 1, ..., J, before moving on to calculate each of the sz ’s, and so on.
The derivative of C; used to calculate each of the F’s is evaluated with model inputs
set at the indicated times (r, t + At/2, 1 + Af/2 and t + At, for Fi, F,, F3 and Fy,
respectively) and with “predictor” values of C; computed as shown. The fourth-order
Runge—Kutta method has an error proportional to (At)?, so very high accuracy can
be achieved as the time step is reduced.

EXAMPLE 6.1 NUMERICAL INTEGRATION OF A SIMPLE
FOOD CHAIN MODEL

To illustrate procedures for numerical integration and the sensitivity of numerical
results to different methods and time steps, the idealized system for nutrient uptake
and growth of phytoplankton and zooplankton shown in Figure 6.3 is considered.
[This example is based on Section 14.1.3 of Chapra and Reckhow (1983).] The
model simulates the cycling of phosphorus between three species: inorganic phos-
phorus, p;; phytoplankton, p,; and zooplankton, p3. The phytoplankton grow via
uptake of inorganic phosphorus and are subsequently consumed by the zooplank-

ton. The zooplankton grow as a result of this consumption, but die and degrade
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Zooplankton Zooplankton Growth,
Ps Phytoplankton Loss

Zooplankton Death,

Nutrient Replenishment

Phytoplankton
Inorganic Py
Phosphorus
P, Phytoplankton Growth,
Nutrient Uptake

Figure 6.3 Simple phosphorus food chain cycle for Example 6.1.

pack into inorganic P. Lotka—Volterra predator—prey relationships are defined for
the phytoplankton and zooplankton, with nutrient uptake and growth dependent
on both the “prey” (inorganic P for the phytoplankton; phytoplankton for the
zooplankton) and predator concentrations. The concentrations of each of the three
species are represented in terms of their phosphorus content [M(P) 55

The model assumes nutrient (inorganic phosphorus)-limited uptake and growth
of the phytoplankton, described by Michaelis—-Menten kinetics (see Chapter 12):

Phytoplankton growth rate = k,, <L> P2
K + P1
where k,, (T~!) is the maximum growth rate and K, [M(P) L73] is the half
saturation constant, equal to the nutrient concentration at which the growth rate
of phytoplankton is half of its maximum value. The phytoplankton are consumed
by zooplankton grazing:

Zooplankton growth rate = ko3 pa p3

where kys [{M (P) L—3}~! T~1]is a second-order rate constant, referred to as the
zooplankton feeding rate. The rate of zooplankton death and consequent nutrient
replenishment is given by:

Nutrient replenishment rate = k, p3

where k, (T ") is the first-order zooplankton death rate.

The phosphorus—phytoplankton—zooplankton food chain is simulated for a
batch reactor, considering only kinetic processes with assumed constant rate coef-
ficients. In real aquatic systems these kinetic processes are supplemented by a sea-
sonal pattern of loadings and discharge from the water body, with temperature- and
light-driven variations in the rate constants. Examination of the growth patterns
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and nutrient cycling predicted to occur in a closed system is nonetheless useful
to begin to understand the dynamics and cyclical nature of the food chain. This
idealized system also provides a good illustration of the behavior of numerical
solutions for ODEs.
The three simultaneous, nonlinear ordinary differential equations for the sys-
tem are
dpi 14
Sl pa—k, —
dr z P3 m K. + p1 P2
dp: p1
L =k, ———pr—k (6.7
dr mKs+p1p2 23 P2 P3 )
dps
o = ka3 p2 p3 — kz p3
[—PL ——P2 P3 P1+P2+P3
100 =
80 P1-v
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Figure 6.4 Numerical solution of the phosphorus food chain model using the predictor—
corrector method.
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Following Chapra and Reckhow (1983), the following coefficients are assumed for
the model: ky, = 0.5day™"; K; = 2mg P/m~%; kyy = 0.1 (mg P/m~)~" day™";
and k; = 0.5 day~'; with initial conditions: p;(0) = 99.8 and p»(0) = p3(0) =
0.1 mg P/m~>.

Numerical simulation results for this model are calculated using the predictor—
corrector method and the Runge—Kutta method, with results shown in Figures 6.4
and 6.5, respectively. For each method, time steps of At =0.4,0.1,and 0.01 days
are utilized. Figures 6.4 and 6.5 also show the computed total P concentration:
prt) =P (1) + pa(t) + p3(1); which, because the system is closed (and constant
volume), should remain equal to the initial value of 100 mgP/m3, as long as an
accurate mass balance is maintained for the system.

As indicated in the figures, the results are sensitive to the time step chosen.
With too large a time step, inaccurate results are obtained, especially with the less
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Figure 6.5 Numerical solution of the phosphorus food chain model using the fourth-order
Runge~Kutta method.
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accurate predictor-corrector method.? If too large a time step is chosen, irregy.
lar results can be generated, with significant deterioration of the mass balangg
and (though not evident in these simulations) even predictions of negative con-
centrations. When state variables that must be nonnegative violate this physica]
requirement, this is a clear indication of error and usually a precursor to instabj].
ity. It is tempting in this situation to consider simple corrections to the algorithm,
such as setting all predicted negative concentrations equal to zero or to a ve
small number. However, such ad hoc corrections generally introduce further mass.
balance errors into the solution. Rather, the preferred approach is to try smalley
lime steps or utilize an alternative, more accurate solution method.” These steps
and the results in Figures 6.4 and 6.5 illustrate the type of trial-and-error teg(.
ing that typically must be done when developing and implementing a numerica]
solution.

Finding the right time step to usc in solving systems of ordinary differentig]
equations is particularly difficult if the system is stiff, meaning that changes in the
magnitude of some of the state variables occur orders of magnitude more quickly than
for other variables. The mathematical consequence of stiffness is that the solution tq
a system of ordinary differential equations requires inverting a matrix that is nearly
singular. Chapter 11 addresses solution techniques for stiff systems of ODEs because
the rate equations for ozone formation in the atmosphere are a prime example of a
stiff system.

Over the past decade, a number of convenient and powerful mathematics soft-
ware packages have become widely available. Mathcad (MathSoft, 1997), Matlab
(MathWorks, 1995), and Mathematica (Wolfram, 1991) all include functions that
will numerically integrate systems of ODEs. In addition to Runge—Kutta schemes,
Mathcad and Mathematica provide specialized functions with adaptive time steps that
can handle stiff systems. The primary limitation of these software packages is that
they offer relatively little flexibility for formatting model inputs and outputs. How-
ever, when such flexibility is not required, they offer a useful shortcut for numerical
analysis.

2 The “correct” results are understood to be those achieved with an accurate method at small time steps
(though not too small, due to round-off error), exhibiting stable and repeatable behavior, and maintaining
overall mass balance. See also Figure 14.5d of Chapra and Reckrow (1983, p. 262).

3 Another trick that can be used when negative concentrations are simulated is to transform the problem
to one described in terms of variable(s) that ensure that the positivity requirement is met. For example,

dividing both sides of Eq. (6.2) by C; yields an equation in terms of the transformed variable ¥; = In(C;),
since

B %

dC; _dinCi _dY _ (@wCom+S (Qu
C; dt dt dt Vexp(Y;)

This model may be solved in terms of ¥; and subsequently transformed back to the targeted variable,
Ci(t) = explY;(#)]. No matter what the value of ¥;(¢), C; (f) remains nonnegative.
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When mass-balance equations are specified with derivatives in more than one dimen-
1, such as time, and one or more spatial dimensions for dynamic models or more

o spatial dimension for steady-state models, the system is then described by

than one

artial differential equations. Consider the equation for two-dimensional advective—
Eiqpcrsivc transport with first-order decay:
acC acC 32C 32C
— =-u—+Dy— +Dy— —kC (6.8)
ar - Yax T T gy

In this application concentration variations are considered oYer time apd in thelz x and

directions, that is, C = C(x, y, ). While analytical solutions to this equation a.re
available when u, Dy, D,, and k are constant over lin".le.a.nd space .(as presenteq in
Chapter 5, dependent on the assumed boundary and initial conditions), I}umencal
methods are required when these parameters vary temporally and/or spaFlall}{. The
methods involve discretized calculations over both the temporal and spatlgl dlme.n—
sions. Two of the most common methods for implementing this type of solution, finite
difference and finite element methods, are described in this section.

6.2.1 Finite Difference Method

The finite difference method solves the mass-balance equation(s) by forcing them to
be satisfied at a set of discrete points in space. Figure 6.6 illustrates a two-dimensio’nal
grid that might be used to solve Eq. (6.8). Nodes in the longitudinal (x) direcllfm
are indexed by i, while nodes in the transverse (y) direction are indexed by j, w1¥h
C(, j, t) indicating the concentration at grid point i, j at time ¢. The !(ey step in
the finite difference method is to express the derivatives for concentration at each
point i, j as appropriate differences between concentrations at adjacent nf)de{:. For
example, for the first (advection) term on the rhs of Eq. (6.8), the first derivative of
C(i, j, t) with respect to x is needed and could be expressed using either:

CG, j,p) _CU+1,j,n—CGJ.0

(6.9)
0x Ax

or

3C(l,],t) _ C(i’j1t) _C(l - lvj!t)

(6.10)
0x Ax

where Ax is the distance between nodes in the x direction. Equation (6.9) uses
forward differencing for the advection term. It approximates the derivative at po'%nt
i, j using the difference between the concentration one node downstream of the point
(in the direction of advection) and C (i, j, t). Alternatively, Eq. (6.10) uses backward
differencing since the first derivative is computed by taking the difference betweep
C(, j, 1) and the concentration at the node one step upstream. Neither approach is
expected to provide an especially accurate estimate of the concentration derivative
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Figure 6.6 Finite difference grid with 6 x 6 (solid) node system. Image nodes (open) added
for subsequent implementation of boundary conditions.

at point i, j, especially if its value is changing rapidly as a function of x. A third
alternative is achieved by taking the average of the forward and backward differencing
equations:

aC(, j,r) _ forward + backward _Ca+1,j,n0-CG—1,j,1)

6.11)
ox 2 2 Ax

This approach, referred to as central differencing for the advection term, does not evel
use the value of the concentration at point i, j; rather, it calculates the derivative by
drawing a straight line between the concentrations immediately up- and downstream
of the target location.

Referring back to the finite cell method introduced in Section 5.7, the same termio-
ology—backward, forward, or central differencing—was used to describe the weight-
ing of concentrations passing with the advective flow across the interface of two cells:
There is a clear parallel between the finite cell method, where concentrations are &V
eraged over volumetric compartments and mass transport occurs between them, a0
the finite difference method in which mass-balance equations are satisfied and O™
centrations computed at points in space. In the latter, the points are still thought t0 b
representative of the spatial domain around them, that is, the degree of spatial r¢P”
resentation is still limited by the coarseness of the grid. Likewise, many of the samé
issues that arise with respect to accuracy, stability, and numerical dispersion in the
finite cell method apply to the finite difference method, especially with regard 1© the
use of backward, forward, or central differencing. These issues are addressed in mor®
detail below. First, equations for the remaining derivatives in Eq. (6.8) are develope”

The dispersion terms in Eg. (6.8) require a differencing expression for second
Jerivatives. Recognizing that the second derivative describes the rate of change in the
first derivative with distance, it can be computed by taking the difference between the
forward difference estimate of the first derivative (which best describes the value of
the first derivative midway between node i, j and node i + 1, Jj) and the backward
difference estimate (for the point midway between node /, j and node i — 1, j), and
dividing by the distance between these points, Ax:

ac) [c.‘{f +1,j,8) = CG, r)] _ [C(f.j.r} Lo Ul l.j.!)]

Y
2C3, j, 1) _ ( dx Ax Ax
ax? T e Ax

CC+1,j,0=2CG j, )+ CGE —1,j,1) 6.12)
B (Ax)?

A similar expression describes the second derivative for the dispersion term in the y
direction:

9?C@, j.0) _ Cl,j+1,0)=2C34 j.0)+CGJj—1.1)

y? (Ay)? (65D

The second derivative in each case is estimated by adding the concentrations at the
adjacent nodes and subtracting twice the concentration at the target node, and then
dividing by the square of the internode distance.

The final derivative that must be specified for dynamic solution of Eq. (6.8) is the
time derivative. Indexing discrete points in time by t = 1,2, ...n,n+ 1,..., where
n is the current time in the simulation, the time derivative is first expressed using a
simple Euler expression (forward differencing in time):

9C(, j,n) _ CG, j.n+1)—CG, j,n)

6.14
at At L
Rearranging to solve for C(i, j, n + 1):
aC(i, j, n)
Cl, jon +1) = CG, jm) + o) 4, (6.15)

ot

Finally, substituting for the terms on the rhs of Eq. (6.8), including the central differ-
*ce expression for the advection term, the following equation is obtained:

Cl, jng 1) =C(@, j,n)

B C(r’+l.j.n)—-C(f—|-L"}:|
o 2Ax

+ Aty 4D,

Cli+1,j,m) =2C(, j,m) +CG — L, n)] 6.16)
(Ax)?

Cli, j +1,1) = 2CG, jum) + CG, j — 1, m)
L (Ay)?

] —kC(, j,n)
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Equation (6.16) is explicit, that is, C(i, j,n + 1) at node i, j at time step n 4 it
computed solely from values of C available at the current time n, at node 7, j
the four surrounding nodes. While relatively easy to implement, explicit snluligns
may exhibit problems with stability. These problems are discussed in the followy,
section, followed by presentation of an implicit solution method that addresses they,

Stability, Numerical Dispersion, and Implicit Solution Methods As with the finite
cell method, finite difference solutions using central differencing are prone to instg.
bility when applied to highly advective, low-dispersion systems. Central differencj,
exhibits inherent “static™ instability whenever the grid size is too large relative to tp,
ratio of the dispersion to velocity. Stability is maintained when

2D
Ax < — (6.17)

u

This is equivalent to requiring that the Peclet number be less than or equal to 2, where
the Peclet number is defined as Pe = Ax u/D. Highly advective (high Peclet number)
domains, such as the riverine portion of a coastal water system, thus require finey
grid spacing. This requirement applies when implementing either a steady-state or
a dynamic solution. When a dynamic solution such as Eq. (6.16) is implemented, 5
further requirement is placed on the time step, At. To avoid dynamic instability, the
time step must be chosen so that (for a one-dimensional problem):

(Ax)?

At <
2D

(6.18)

For a two-dimensional problem (such as Eq. (6.16)], the restriction is greater still,
with the two in the denominator of Eq. (6.18) replaced by 4.

One approach for avoiding the restrictions on Ax imposed by the static stability
requirement [Eq. (6.17)] is to use backward, instead of central, differencing. However,
as with cell models, this introduces numerical dispersion. Backward differencing
computes the advective transport from a value of the derivative further upstream. The
resulting error has the same effect as increasing the dispersion coefficient, moving
additional mass from nodes with high concentration to nodes with low concentration.
In the dynamic solution the magnitude of the numerical dispersion is given by:

1 u At
D,=-ulAx|1l——— 6.19
2u x< Ax) 6.19)

When backward differencing is employed to address stability problems, the extra
numerical dispersion must be recognized. It may be necessary to reduce the input
values of the dispersion coefficient(s), that is, reduce assigned values of D (D, and/or
Dy) so that the assigned values plus the numerical dispersion introduced through
the numerical method equals the level of dispersion targeted for the problem. If the
numerical dispersion exceeds that targeted for the application, this clearly will not
work (negative dispersion coefficients cannot be assigned). Furthermore, in problems
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Figure 6.7 Explicit versus implicit S()luli.()!'l of a finite diii’crcr}cc prub!cm over time f(.:r a
gpati:ﬂly one-dimensional system. The explicit method uses only information a\ra.liab]c at .tlme-
it lo compuie derivatives and move forward to time n + 1. [Arrt)w‘s show flow of mfor!naimn:)
Tmplicit methods compute derivatives from the model state at time 7 + 1 (and at time n if
pnrlially implicit) so that solution of simultaneous equations is required to move forward to

ime n + 1.

with variable time steps and complex grid systems, it may be difficult to amf:nain the
magnitude of the numerical dispersion. The use of l?ackward differencing is tlu.ls an
imperfect solution to stability problems, but one that in some cases cannot be avoided,
especially when solving steady-state models. . o B

For dynamic models, an alternative approach is available for maintaining stability.
The explicit approach depicted in Eq. (6.16) may be replaced by an implicit nwlhot:l.
The key difference between explicit and implicit time integration is illustrated in
Figure 6.7. The explicit method uses available node concentrations from time n to
compute all concentrations at time n+ 1. The implicit method expresses the equations
for concentration at each node at time n 4+ 1 in terms of concentrations at other nodes
at time 7 + 1. The equations are implicit because the information needed to move
forward from time # to time n+ 1 is not all available at time n; rather the equations for
the concentrations at the different nodes at time n + 1 must be solved simultaneously.

A fully implicit solution defines all terms in the time derivative, dC/dt, using
concentrations (and model inputs and parameters) at time n + 1. The fully implicit
equivalent of Eq. (6.16) is given by:

C.j,n+1)=CG, j.n)

B C(i+1,j,n+1)—C(i—1,j,n+1)]
“ 2 Ax
' j —2CG, jon+ D +CGE—1,j,n+1
v CGi+1,j,n+1)=2C0 j,n+ 1) +CG J )
: (Ax)?
+Dy[c(l’1+1’n+l) Zc(l(’i”;;rl”c(l’J =Lk )]—kc(i,j,n+1)
y

(6.20)
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If model inputs u, Dy, D,, and k vary with time, their values at time 741 woulq al
be used in Eq. (6.20). *

A partially implicit solution defines the time derivative as a weighted average
values computed using concentrations (and model inputs) at times n and n + [; ol

Cl jin+1)=Cl, jim) + At {a a4

+ 1 Ol)ac
n+1 ot n (621)

The case where o = 0 corresponds to the explicit method, o = 1 to the fully imp;g;
method, and 0 < @ < 1 to a partially implicit solution. The special case in whicl}i
o = 0.5 is known as the Crank—Nicolson method. The partially implicit solutigy,
corresponding to the explicit Eq. (6.16) and the fully implicit Eq. (6.20) is

CG,jn+1)=C0, Jj.n)

_M[C(i+1,j,n+1)—C(i~1,j,n+1)
2 Ax

+ Ata +Dx[

Ci+1,jn+1)—-2C0j,n+D+CE—-1,j,n+1)
(Ax)?

CU,j+1l,n+1)—2CU, j,n+D)+CU Jj—-1,n4+1)
+DJ’[ (ay)? ]_ S S
_u[C(i +1,j,m) —CG— 1, j,n)
2 Ax
CG+1,j,m) —2CG, J, i~ 1,
Al —a) +Dx[ P ZC((Alxj)anC(l LNL)] f

C@,j+1,m)—=2C3U j,n)+CU, j—1,n) .

+Dy[ 0 }—kC(l,j, O I

Implicit or partially implicit solution methods are very effective at maintaining
stability. However, they increase the computational burden significantly. For a system
with N total nodes, a set of N simultaneous equations must be solved at each time
step. Efficient methods for implementing this type of solution are discussed below.
First though, the remaining building blocks of the solution, the initial and boundary
conditions, must be specified.

Specification of Initial and Boundary Conditions With any of the finite difference
solution methods thus far described, initial and boundary conditions are needed. For
dynamic simulations, initial conditions are needed for the model state variables (e.g.,
contaminant concentrations) at all nodes attime ¢ = 0 in order to initiate the computa-
tions. In some problems these conditions are unknown or highly uncertain, especially
when the model is used for long-term simulations involving historic reconstruction.
Even when the primary interest is in recent, current, or future values predicted by the
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| historic conditions, perhaps beginning many years carlier, may be needed to
e calculations. In some cases accurate selection of these initial conditions

not be necessary—the model equations may have a short enough “memory” that
|11ii initial conditions do not influence the solution. This is fortunate, especially if you
lﬂ;.c jittle information for specifying the initial conditions. For other problems, the
gial conditions do matter, and they must be determined as part of the calibration
mr parameter estimation process. The only way to tell is to try solving the equations
with different initial conditions and see how the solutions differ.

Boundary conditions are required to specify the system state variables and/or their
dc;ivativcs (e.g., concentrations and mass flux conditions) at all system boundaries,
whether @ dynamic or a steady-state solution is implemented. Consider the set of
poundary nodes identified in Figure 6.6. Along the left-hand side of the domain
(where i = 1), values of C (i — 1, j, ) are off the grid and unavailable. How then can
he backward or central differencing expressions for the first derivative [Egs. (6.10)
and (6.11), respectively] or the expression for the second derivative [Eq. (6.12)] be
included in the mass-balance equation since these both include C(i —1, j, t)? Similar

roblems arise with the identification of C(i, j — 1, ) for nodes along the top row,
ci+ 1,1 for nodes in the last (right-hand) column, and C(i, j + 1, 1) for nodes
along the bottom row. A creative solution is needed for this dilemma.

Three types of boundary conditions may apply:

mode
nitiate th

Type 1, or Dirichlet boundary conditions: Here the model state variables are spec-
ified, for example, the concentrations along the boundary are known (at all
times);

Type 2, or Neumann boundary conditions: The derivatives of the model state vari-
ables are known. In the case of advective—dispersive transport, this involves
specification of the spatial derivative of the concentration normal to the
boundary, either 9C/0x, aC/dy,or 9C/az.

Type 3, Cauchy, or mixed boundary conditions: Linear combinations of the state
variables and their derivatives are specified.

When the concentrations along a boundary are known, a Dirichlet boundary condition
is used. Given the fluid flow rate, Q = uA, this is equivalent to specifying the advec-
tive flux across the boundary, = uAC, where A is the cross-sectional area associated
with the grid point (normal to the boundary). A Neumann boundary condition is used
to specify the dispersive flux across a boundary [—-DA(3C/0x)], since it involves
fixing the value of the derivative. The total (advective + dispersive) flux across a
boundary, uAC — DA(dC/dx), is specified using a mixed boundary condition.*

#Confusion may arise in recognizing that advection at the boundary is determined by the concentration
at the boundary and not the concentration derivative since the term representing advection in the mass-
balance equation includes the derivative. However, in the derivation of the mass-balance equation, this
term actually expressed the change in advection that occurs at the point, leading to mass accumulation
or loss, and not the advection across the point itself. Similarly, specifications related to dispersion are
tmplemented by fixing the first derivative, even though the second derivative appears in the dispersion
term of the mass-balance equation.
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To implement a Dirichlet boundary condition, the concentrations along the apypy,
priate boundary row or column are set to their known values throughout the cajg,_
lation. To implement a Neumann or a mixed boundary condition, image nodes are
added as an extra row or column beyond the grid boundary. Concentrations at thege
grid points are set equal to the values necessary to maintain the known flux (tota] o,
dispersive) across the boundary. The exact equation used depends upon the type o
differencing used to represent the derivatives. The steps taken to specify boundar).
conditions and associated node calculations are illustrated in the following example

EXAMPLE 6.2 BOUNDARY CONDITION SPECIFICATION
FOR A FINITE DIFFERENCE MODEL

To illustrate different types of boundary conditions and how they might be im-
plemented in a finite difference solution, consider once again the system depicted
in Figure 6.6. The following assumptions are made for each boundary, with the
indicated implications for numerical computation.

1. Concentrations are known at all times along the lhs of the domain (where
i = 1) and along the bottom boundary (j = 6). The mass-balance equation
[Eq. (6.22)] is not needed for these nodes. However, the known values at
these boundary points are used when implementing Eq. (6.22) for the nodes
in the second column (i = 2) and for the nodes in the next-to-the-last row
(j = 5), since these known concentrations constitute the respective values
of C(i — 1, j, n) (for calculations in the second column) and C(i, j + 1,n)
(for calculations in the next-to-the-last row). As a result, given the 6 x 6 grid
in Figure 6.6, the number of equations that must be solved is reduced by
6 4+ 5 = 11. The use of type 1 boundary nodes thus reduces the number of
equations that must be solved. Note that the total fluxes across the upstream
and bottom boundaries are not specified since the derivatives (and with them,
the dispersive fluxes) across these boundaries are not input, but are computed
as part of the model solution.

2. Assume that zero fluxes occur across the top boundary and the down-
stream (right-hand) boundary. Since there is no flow across the top boundary
and the advective flux is therefore zero (by definition), this is equivalent to stat-
ing that the dispersive flux across the top boundary is zero. At the downstream
boundary, where fluid flow leaves the system, the fotal flux is set equal to zero.
In both cases a set of fictitious image nodes is needed along the boundary, ata

5 Like the semi-infinite column boundary condition used for one-dimensional analytical solutions (8C/2x
= 0 atx = o00), this boundary condition only makes sense when the downstream boundary is “far
downstream,” so that the concentrations computed there are not really of concern and have little effect
on the computed concentrations that are of interest, further upstream. A bigger grid system, extending
further downstream in the x direction, may be necessary to accomplish this, and this assumption should be
tested by varying the length of extension to ensure that the downstream boundary does indeed not affect
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distance Ay above the top row and Ax to the right of the last column. Assuming
that the central difference expression is used to define the first derivative [as it
is in Egs. (6.16), (6.20), and (6.22)], the concentrations at the image nodes are
computed as follows:

For the top boundary: Beginning with the equation for the dispersive flux,

and substituting the appropriate node concentrations into the central difference
expression gives

W |:C(:,2, n) —C(i,0,n) "
2 Ay

where j = O refers to the image nodes in the row above the top boundary.

This equation can be solved for the image node concentrations at each time
step. In particular, the zero-dispersive flux requirement can only be satisfied
when the image node concentrations are set equal to those of their “partner”
nodes in the second row:

C@#,0,n)=C(,2,n)

For the downstream boundary: Beginning with the total flux equation

3
waC — DA% _ o
0x

and substituting the appropriate node concentrations:

Cm) =CG.im] _,
2Ax o

uAC(6, j,n) — DA [

yields the desired expression for the image node concentrations [C(7, j, n)] at
each time step:

2Axu

X

C(7,_],l’l)=|: ]C(67J’n)_c(5’17n)

Setting the top and downstream image nodes as indicated above implements
their respective no-flux boundary conditions but does nothing to reduce (or
increase) the number of equations that must be solved. Thus, for the 6 x 6 grid
system in Figure 6.6, a total of 36 — 11 = 25 equations must be solved at
each time step. With the explicit method, each of the 25 equations is solved
individually at each time step, as in Eq. (6.16). With the implicit or partially
implicit method, the 25 equations must be solved simultaneously at each time

eton
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This example does not exhaust the different types of boundary conditions that
might arise in environmental models. Variations can occur in different physic,
systems and at different media interfaces (in problems involving mass transpoy
across media). A further example of boundary condition selection and implemey,.
tation is found in Chapter 9, where a finite difference model is used to simulage
groundwater flow and contaminant transport. In each case, the boundary conditigy,
and its implementation in the model must be deduced from the underlying mass or
momentum conservation and transport conditions assumed at the boundary. Whey,
poorly understood or highly uncertain boundary conditions have a significant ip.
pact on the overall mass balance of the system and predicted concentrations g
points of interest, it may be necessary to determine at least some of the boundary
conditions through a model calibration or parameter estimation effort. Methody
for parameter estimation of unknown or uncertain model coefficients and inputg
are presented in Chapter 14.

Steady-State Solution Consider now the steady-state two-dimensional advective-
dispersive transport problem. The concentration time derivative in Eq. (6.8) is set
equal to zero:

aC 82C 92C

0=-u—+D,— +Dy— —kC )
U + D, %2 + D, 572 (6.23)
This equation must be satisfied at all nodes. The same differencing expressions are
used for the spatial derivatives and the boundary conditions as implemented above,
Using central differencing for the advection term, Eq. (6.23) becomes

. _u[c(f +1,j)—C(i — 1.;‘}] +DX[C(E 41, ) =2CG, H+CG —1,))
2Ax (A.k'}z

Cl,j+1)=2C0U H+CG, j-1)
(Ay)?

| |- rea.i (624

Note that the time dimension (r) is no longer included. The equation is rewritten to
isolate C (i, j) on the lhs:

CU+1.5)—Ci—1, Cl+1,7)+CG—1,)
C(i,j)=<[—u][ Sla J;M(’ J)]+Dx[ Las J()At)gu J)]

+Dy[C(r,j+l)+C(f.j— I)D/{ 2D, | 2D,

+k (6.25)
(Ay)? (Ax)2 ~ (Ay)? }

For the example system above, the boundary conditions again determine known con-
centrations for the first column and the bottom row. Similarly, image nodes are added
above the top row and beyond the last column with appropriately fixed concentrations
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. jement the no-flux assumptions. This leaves a set of 25(= 36 — 11) simulta-
19 lm?rnear algebraic equations that must be solved once. In general, steady-state
e 11~; using finite difference or finite cell methods require solution of a set of

mbl]t;:;{eous ;quations once. Dynamic models with explicit solution methods re-

- -u (the much simpler) solution of a sequence of independent equations at each
i ep, while dynamic models with implicit methods require solution of a set of
ti‘me ; : li:gus equations at each time step. We next illustrate a particular set of iterative
5“":;;3,; that are especially useful when solving “sparse” systems of equations of the
i];f,c considered thus far.

[terative Solution Methods for Simultaneous -Linear Algebraic Equations. In the

mple above, a set of 25 simultaneous equations must be solve.:d at each time step
cxa'mplcment a (partially) implicit solution, or once 1o determine the steady-state
;T}[Ltiun. While matrix inversion or related procedu?es can b-e used to accomplis.h
pis, this problem is especially suited to solution using iterative tecl.]m.qucs. These
:ecl;niques are relatively easy to implcmc:,nt when tl.le problem matrix is sparse, as
occurs when the mass-balance equation for a node includes concentrations at only
a few other system nodes: typically the upstream and downs.tream.nodes for a one-
dimensional problem, the four surrounding nodes for a two-dimensional problem, or
the six surrounding nodes for a three-dimensional problem.

The first step in an iterative solution is to isolate the targeted unknown state
variables on the lhs of each equation, with one equation fqr each of the unknowng
Thus, for the dynamic model with implicit solution dcscnb.ed abo‘veT Eq. (6.22) is
rewritten for each of the 25 nodes by moving all terms involving C(i, j, n + 1) to the
lhs of the equation:

a0, 2D, .
. __" _ k == C ) ’n)
Cl,jon+1) 1+Am[(m)2 T “ 4

C(i+1,j,n+1)—C(i—1,j,n+l)] ]
- 2 Ax

CG+1,jn+H+CGE—1jn+1)
+ Ata +Dy

(Ax)?

Clj+1Ln+ 1) +CGj—Ln+D)
+Dy (By)?
L

C(i+1,j,n)—C(i—1,j,n)]
_”[ 2 Ax
C(i+1,j,n)—2C(i,j,n)+C(i—l,j,n)
+ At(l — ) +Dx[ (Ax)2
C@,j+ l,n)—ZC(i,j,n)-l—C(i,j — Ln)]—kC(i s
[+m[ (AyY
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Dividing both sides of the equation by

2D, 2Dy
. k
{1 * Am[(m)? Ty T ]}

yields the targeted expression, with C(i, j, n + 1) only found on the lhs:

1
CGjin+1)= — —
1+A X y
+ t“(umz {A_v)2+k)
( _ul:C(f+],j'n+l}—C(:'—I,j.n-l—l}]
2Ax

x | (CU, j,n)+ At +Dx[

Ci+1,j,n+1)+CGE—-1,j,n+1)
(Ax)?

+Dy[ (&y)?

C(i,j+1,n+1)+C(i,j—1,n+1)]

_u[(.‘(i +1,jn)—Ci — l,j.u):l
2 Ax

CG+1,j,n)—2CG, j.n)+CG —1, j.n)
¥ At —a) +Dx[ J z J ]

(Ax)?
CG,j+1,n) —2CG, j,n) + CG, j — 1, .
+Dy[ (i,j+1,n) ((Alyj)zn) @i, J n)]_kc(w,n)
(6.26)

Equation (6.26) looks daunting but is easy to implement in the iterative solution
framework. To do this, the full set of 25 equations corresponding to each unknown
value of C(i, j,n 4 1) is written, an initial guess for each of the C(i, j,n + 1) is
made, and the equations are solved repeatedly over many iterations until convergence
is achieved. That is, beginning with an initial guess, C(i, j, n + 1)° for each of the
25 nodes where solution is required, values of C(i, j, n + 1)! are computed, values
of C(i, j, n + 1)* computed from these, and eventually C(i, j, n + 1)"*! computed
from the C(i, j, n + 1)™ until:

CU,jn+ D" —CG, jn+1D" <e (6.27)

where ¢ is a very small value chosen to test for convergence. When the convergence

criterion is satisfied at all nodes, the values of the target concentrations at iteration

number m (or m 4 1) are accepted and used to move forward to the next time step-
Within each iteration, the calculation proceeds across the grid, and Eq. (6.26) is

axrea i tard Lo A1l AL 1l tnenread cmn T a o At et e e

S R P D . R PP N'e}
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men+ 1 on the ths of Eq. (6.26) [C(i — 1, j,n+1),C( +1,j,n+1),CG, j—
nd C@, j+1,n+1)] can all be evaluated using their values from iteration

e
m/I:

1
2D, 2D,
e Ly
@02 a2 )

mo_

C(i,l'v”"'l) -

1+Atoe<

ClU+1, jn+ 1)y —Cli =1, jyn+ 1y
— 2 Ax

CGi+1,jn+ )" 4Cl—1,j,n+1)"!
+Dx[ Gil)

x | (€, j.m)+ Ata (Ax)?

CG,j+1La+ )" +CG j—Ln+ 1!
+D)’[ (i, Jj

(Ay)?
[C(:’+I.j.n]—(.‘{f—l.j.")] \
—Uu
2 Ax
CG+1,j,m)—2CG, j,n)+CG—1,j,n)
+Ar(1 —a) x{ +Dx (Ax)?
CG,j+1,n)—2CG, j,n)+C3,j— l,n)] KCG, j
- ,J,I’l)
+Dy[ Ay)? )
(6.28)

This calculation, known as Jacobi iteration, can proceed in any order through the
grid system since all the unknown concentrations at iteration m — 1 are computed,
stored, and used in the calculation for iteration m. An alternative approach, the Gauss—
Seidel iteration, uses unknown concentrations that have already been calculated in
iteration m for the calculation of subsequent unknown concentrations during the same
iteration. To envision this, imagine sequentially sweeping across each row from left to
right, beginning each iteration at the upper left-hand corner (ati = 1, j = 1), moving
across the first row until it is completed, then moving to the beginning of the second
row (i = 1, j = 2), continuing to the right, and so on, until the full set of unknown
nodes is evaluated. With this order of calculation, values of C(i — 1, j, n 4 1)" (from
the column to the left) and C(i, j — 1,7 + 1)™ (from the row above) will already
be available when it is time to compute C (i, j, n + 1)". Why not use them in Eq.
(6.26) instead of the old values of C(i — 1, j, n + D land CG, j— 1,n+ 1yt
from the previous iteration? If (as we hope!) each iteration brings the concentration
estimates closer to their correct values, the latter values should be more accurate and
allow for more rapid convergence to the correct values. Gauss—Seidel iteration does
indeed allow for more rapid convergence. It has the further advantage that it is easier

t program since values of the unknown concentrations from the previous iteration no
Tamecme o 1 s T ot g1 AN andA Y T 1 v LI are coombpiited




230 OVERVIEW OF NUMERICAL METHODS IN ENVIRONMENTAL MODELING

and their tests for convergence are implemented. The resulting Gauss—Seidel itepqq;
equation is given by: Allye

]

CU, jn+ 1" =
1+ Ata (_ED,. ——w-", )
(Ax)*  (Ay)?
/ 7”[(‘(:‘ +Ljon+ )" —Cl =1, jn+ 1"
2Ax

x | (CG, j,n)+ At +D,\'[

Cli+1, jn+ 1" +Cli—1, jn+1)"
(Ax)? ]

w0,

CG,j+1,n+D" " +CG j—1n+1)"
(Ay)?

_M[C(i +1,j.m)=C@i—1, j, n)}

2Ax

e o e .
Ao +Dx[ G +1,j.m) = 2CG. j,m) +CG 1,J,n)]

(Ax)?
C@,j+1,n-2C0 j,n)+C3U, j—1,
+Dy[ (By)? : n)]_kc(i’j i
(6.29)

Tl}is same approach can be used to solve the steady-state model equations. To do
this, note that the working equation has already been modified to isolate C (i, j) on

ffhe lhs [see Eq. 6.25)]. Equation (6.25) is then written for Gauss—Seidel iteration as
ollows:

CG, )" = <[—u] [C(i =L j)m;]A_ =l j)m]
X

LD, |:C(i +1, )"+ Ci - 1,j)’":|
(Ax)?
CG,j+Dm" 1 +cCi, j—1n" 2D, 2D
+D [ . 2D,
’ (Ay) D/ {(m)2 MVSOE +k}
(6.30)

With any of the iterative solution methods, initial guesses are required for each of
the unknowns. For the steady-state model, these may be estimated by interpolating
between boundary conditions, if they are known. For the dynamic model with implicit
solution, the initial guesses for each time step may be set to the computed values
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from the previous time step, or Lo estimates for the new time step computed using the
cplicit solution [e.g., Eq. 6.16)].

¢ Other techniques, such as successive over relaxation (SOR), are available to fur-
(her speed the rate of conversion of an iterative solution (Hoffman, 1992, p. 56; Wang
and Anderson, 1982, p. 27). With SOR, the change that occurs with each iteration is
exlﬁ"dcd by first noting the change, multiplying it by a factor @ (generally between
1,0 and 2.0), and adding the product to the previous iteration. A two-step procedure
(simil“f to a predictor-corrector method) thus results. For example, for modification
of the Gauss—Seidel solution of the steady-state model [Eq. (6.30)], SOR is imple-
mented by first computing a “predictor” value of C(i, j)"* using Eq. (6.30), then
computing the “corrector”™ as:

CG, jy" = CG, " +o[Ch, )™ - CGH"] (6.31)

Though convergence is generally faster with SOR, problems with overshooting the
correct answer can oceur, causing oscillation around the correct answer. A method
{hat utilizes decreasing values of @ (decreasing toward 1.0) as m increases can be
used if this problem occurs. In most situations it is safest to stick with the Gauss—
Seidel method, unless the computation time resulting from the iterative solution is
excessively large (as may be the case when, as with the implicit dynamic solution,
the iteration is required at each time step).

6.2.2 Finite Element Methods

A second numerical approach for solving partial differential equations is the use of
finite element methods. Finite element methods originated in the field of solid me-
chanics and are the standard methods for solving structural analysis problems. They
are less widely used than finite difference methods for fluid mechanics and heat and
mass transfer but offer significant advantages for some applications. Finite element
methods are especially useful for problems with irregular geometry, inhomogeneous
properties, and complicated loadings. It is relatively easy to vary the size of the el-
ements over the model domain, whereas grid cell size variations can introduce sig-
nificant complications with finite differences. Finite element methods are also more
accurate and stable than finite difference methods for comparable element and grid
cell sizes.

As discussed in the previous section, finite difference methods are developed
by replacing spatial or temporal derivatives in a partial differential equation with
differences defined between nodes on a regular rectangular space-time grid. Finite
element methods also start with a discretized domain and produce algebraic equations
from differential equations. However, with finite elements, the value of the state
variable of interest across a small element of the domain is approximated by an
interpolating function, which is usually a polynomial. Elements are regular polygons
in one, two, or three dimensions. Values at the vertices or nodes of cach element
are determined to optimally satisfy the partial differential equations that apply to the
system. The solution is assembled over the full domain by requiring that values of
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the state variables along the edges of adjacent elements match and that boung
conditions be satisfied.

A description of the main steps required in finite element analysis, with ap il.
lustration for the 1D steady-state advection~diffusion equation, is found in the Sup.
plemental information for this chapter at www.wiley.com/college/ramaswami. Mora
in-depth presentations of finite element methods are provided in textbooks ded icateq
to the subject (e.g., Desai, 1979; Wait and Mitchell, 1985; and Zienkiewicz and Tay-
lor, 2000). Bear (1979), Wang and Anderson (1982), and Zheng and Bennett ( ]995)
provide accessible introductions to finite elements in the context of groundwater flow
and contaminant transport modeling; more in-depth presentations are found in (Glny.
man (1970), Guyman et al. (1970), Pinder and Gray (1977), Huyakorn and Pindey
(1983), and Carey (1995).

ary

6.3 SOLUTIONS TO NONLINEAR SYSTEMS OF EQUATIONS

Section 6.2.1 described the Jacobi and Gauss—Siedel methods for solving systems of
linear algebraic equations, as employed for numerical solution of the finite difference
representation of advective—dispersive transport phenomena. Indeed, these and other
matrix inversion techniques are the basic numerical methods for simultaneously soly-
ing any general system of linear equations. However, linear relationships are often not
adequate to represent real-world systems, particularly when chemical reactions are
involved. Consideration of chemical equilibria, dependence of equilibrium constants
and rate constants on temperature (often an exponential relationship), and inclusion
of chemical kinetics of orders greater than 1, introduce a high degree of nonlinearity
into the relationships between different variables in physicochemical systems. This
section describes numerical methods used to solve the systems of nonlinear algebraic
equations that may apply to these problems. As always, for any solution technique
to work, the number of equations must be equal to the number of variables in the
system. Typically, the variables in a system may include the concentrations of var-
ious chemical species involved in reactions, ambient temperature, pressure, and so
forth. Kinetic and equilibrium relationships and charge and mass balances provide
the framework for the nonlinear equations relating these variables to each other. At a
single time step, the multispecies nonlinear system of equations is solved using the
techniques described below.

Before addressing multispecies systems of equations, it is useful to first consider
the Newton—Raphson method for solving a nonlinear equation involving just a single
variable. Consider a polynomial equation, f (x), of order greater than 1. Solving this
equation involves finding values of x at which f(x) will go to 0, that is, f(x) = 0.
We do not know the roots of this equation a priori, and use an iterative scheme to
approach the roots from an initial guess, xo. If x were the real root of the equation,
f(x) would be exactly 0. In addition, if the initial guess, xo, was sufficiently close to
the real root, x, f(x) could be computed from the first derivative f’(x) evaluated at
xo[=f"(x0)] as shown below, and set to O:

f&x) = fxo) + f'(x0) x [x —x0] =0 (6.32)
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which, upon rearrangement, yields

Sf(xo) 633)
f(xp)

XxX=xyg—

n reality, since we have no a priori knowledge of the value of the roots of the equation,
: (6.33) is used iteratively to converge on the roots of the equation f(x) = 0,
garting with an initial guess, xo. If we specify each iteration number as m:

Xmtl = Xm — f i) (6.34)
I Gm)

Equation (6.34) is called Newton's method or the Newton-Raphson method for ﬁr.ld-
ing the roots of nonlinear equations. The method rapid!‘y converges to the solution
put is computationally expensive since the exact der:vaswe [f'(x)] needs to be first
Jetermined analytically and then evaluated at each iteration. Note that rearrangeme’nl
of Eq. (6.34) yields the discrete definition of the slope f'(x) when }f(x) =0, that is,
f'om) = [0— F(xu)1/[Xmp1 — Xm ). The Newton—Rap}.lson method is closely related
10 other slope-type iteration methods such as the bisection method and the method of
Regula Falsi, as illustrated in Figure 6.8.

f(x) &

fx,)

v

A

S

v

0 flx) } _ [ fx) - flos) }

Bisection Method: Slope = [ P

X — X

0- flx)
Newton’s Method: Slope = f'(x)= [ X —x ] for any x near the root

Figure 6.8 Using the concept of slope in the bisection method where the root, X, is con-
verged on from a point x, to the right and a point x; to the left, and in the Newton—Raphson
method where the derivative function f’(x) is used to converge toward the real root xo = Xp-
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Problems that can arise with the Newton-Raphson method include the presepc,
of an inflection point in the function near the location of the root, which can Cauge
divergence from the real solution. The solution may oscillate around a local minimyy,
or maximum in the function if one is encountered on the way to the root. The presenc,
of multiple roots in the interval within which iterations are being commenced can a|g,
cause masking of one root by another, that is, depending upon the choice of the inijy
guess X, the solution may converge consistently toward one root, missing the other
solution.

Next consider a set of n equations, Fi, Fa, Fs, ... F,, involving n variables, X
Xy, X3, . .., Xp. The set of equations may be written as: i
Fi(x1,x2,%3, ..., %) =0
Fo(x1, X2, %3, .-, %y) =0

F3(x1, X2, %3, ..., X2) =0 (6.35)
Fo(x1, x2,%3, ..., %) =0
This set of equations is solved when the values of (x1, X2, X3, - - . , X, ) simultaneously
satisfy F,, = 0, for all n shown in Eq. (6.35). If our initial guesses of the solution set
are (X1,0, X2,0, X3,0 - - + » Xn,0), 211 expression analogous to Eq. (6.32) for the multivari-

ate problem specified in Eq. (6.35) can be written as:

aF IF 9F,

FLQ, X2, %3, .o » Xp) = Fy (X105 X2,05 ¥3,0, ¢ ++2 Xn,0) + — 8+ — . b =

9x1 axy ax,

JIF, dF, 0F,
Fy(X1, X2, X3, « - - %) = F2(¥1,0, X2,00 X3,0, 0005 ¥ 0) T sx + Ay IR 25x, =0

x| ax, ax,

0F, 0F oF; (6.36)
Fa X0y X2, X3, -+ 0r Xu) = F3(X1,0, X2,00 ¥3,05 s X 0) + 7821 + ——8xp ..o 7—8x, =0

3x. 3)62 n

dF, F, dF,
Fy (10 X2, X3y -+ Xu) = Fu(X1.0, %2,0, X301 -+ Xn,0) + o 8x1 + ——=8x2 + ... “t5x, =0

3x1 sz a“-’n

In Eq. (6.36), 8x; = (x; —X;,0). Note the similarity between the system of » equations
in Egs. (6.36) and (6.32), which was written for a single variable. As above, our
first guess may not be very good, so multiple iterations may be required. In matrix
notation, the expansion equation for iteration m + 1 may be written as follows:

F(x,1) = FOx 4 8%) = F(X,1) + J(X,)3% = 0 (6.37)
where X = {x;, X2, ..., %) LE={F1, Fa, ..., F,\T, and 8x = {8x1, 8x2, .., sxu)%s

with 8x; = (Xpa1— Xim)- The matrix Jin Eq. (6.37) is known as the Jacobian matriX,
and is defined as:
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dF, oF [ oF ] )
9xy 0xn 0xy

oF; oF, ol

Jxm) = | Lox1 9x, dx, (6.38)

aF, oF, ] [ OF, ]

L dx 1 axa axu i

The partial derivatives in this matrix are evaluated using values from the mth iteration,

1. With F(Xmy1) = 0, Eq. (6.37) can be rearranged into the standard form for a
system of linear algebraic equations:

Jxn) %] = —F(Xm) (6.39)
Rearrangement of Eq. (6.57) yields
X1 = Xm — [JXm)] ™ F (%) (6.40)

Once again, note the similarities between the iteration algorithm for Newton’s method
for a single variable shown in Eq. (6.34) and that represented in matrix form in Eq.
(6.40) for the multivariate problem. While the matrix representation for multivari-
ate nonlinear systems of equations provides convergence when certain matrix con-
sraints are met, the evaluation and inversion of the Jacobian matrix can be difficult.
Instead, a modified Newton—Raphson method is used for faster computations. In this
method, the partial derivative matrix is simplified and approximated by using only
the diagonal terms of the matrix shown in Eq. (6.38). Thus, the iteration algorithm
becomes

Fr(x1, X2, -+ o0 Xndm

Xl,m+l = Xim — 3F1
[axl](X;,Xz ----- Xoi)m

(6.41)

F,(x1,x2, .-+, Xn)m

Xnm+1 = Xnm — aF
n
[ 0y :\ (X4 Xaesi XD

Example 6.3 illustrates the use of the modified Newton—Raphson method for a two-
variable problem, mimicking (for a relatively simple case) some of the chemical
equilibrium equations that are presented in Chapters 2 and 12.
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EXAMPLE 6.3

Consider a reversible reaction in which a chemical species A1 is transformed in
another species A2, with equilibrium constant K= 2. By stoichiometry, itis givey
that 2 [A1] < [A2]. The total molar concentration of A introduced into the systen,
is 1 mol/L, initially introduced as A1. Hence the two relevant equations linkjng
the two variables Al and A2 are

A2
_ [[Al]]’zl =2 Equilibrium relationship

[A1]1+2[A2] =1 Mass-balance relationship

Substituting the first equation ([A2] = 2[A17?) into the second one, and solving
the resulting quadratic equation, we get the exact solution (to the sixth decimal
place!) as: Al = 0.390388 and A2 = 0.304806. This indicates that, of 1 mol of
Al introduced into a 1-L reactor, 0.61 mol are converted to A2, yielding 0.305
mol of A2 (due to stoichiometry) with 0.39 mol of Al remaining in solution.

Now, we shall see if the exact solution can be found by the modified Newton-
Raphson iteration method. To be consistent with the notation used in the discus-
sion of theory, we see that:

Fi(Al, A2) = —2[A1]* +[A2] =0 aF;/0A1 = —4[Al]
F(Al,A2) = [A1]1+2[A2]—-1=0 AF,/0A2 =2
We can begin with an initial guess that Al = 1 and A2 = 0, that is, the situation

at the point when the reaction had not yet commenced. The first 27 iterations are
shown below:

Iteration Al A2 F F, dR /oAl I /3A2
1 1 0 -2 0 —4 2
2 0.5 0 —0.5 —0.5 -2 2
3 0.25 0.25 0.125 —-0.25 —1 2
4 0.375 0.375 0.09375 0.125 —-1.5 2
5 0.4375 0.3125 —0.07031 0.0625 —1.75 2
6 0.397321 0.28125 —0.03448  —0.04018 —1.58929 2
7 0.375627 0.301339 0.019148 —0.02169  —1.50251 2
8 0.388371 0.312186 0.010522 0.012744 —1.55348 2
9 0.395144 0.305814 —0.00646 0.006773 —1.58058 2
10 0.391055 0302428 —0.00342  —0.00409  —1.56422 2
11 0.388868 0.304473 0.002035 -0.00219  —1.55547 2

(continued)
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fgeration Al A2 2 " dF/0A1  9F/0A2
12 0.390177  0.305566 0.00109 0.001308 —1.56071 2
3 0.390875 0.304912 —0.00066 0.000698 —1.5635 2
14 0.390456 0.304562 —0.00035  —0.00042  —1.56182 2
15 0.390232  0.304772 0.000209 —0.00022  —1.56093 2
16 0.390366  0.304884 0.000112 0.000134 —1.56147 2
17 0.390438 0.304817 —6.7E-05 7.16E-05 —1.56175 2
18 0.390395 0.304781 —3.6E-05 —43E-05 —1.56158 2
19 0390372 0.304802 2.15E-05 —23E-05 —1.56149 2
20 0.390386  0.304814 1.15E-05 1.38E-05 —1.56154 2
21 0.390393 0.304807 —6.9E-06 7.34E-06 —1.56157 2
2 0.390389 0.304803 —3.7E-06 —4.4E-06 —1.56156 2
23 0.390387  0.304806 22E-06 —24E-06 —1.56155 2
24 0.390388  0.304807 1.18E-06 1.41E-06 —1.56155 2
25 0.390389 0.304806 —7.1E-07 7.53E-07 —1.56155 2
26 0.390388 0.304806 —3.8E-07 —4.5E-07 —1.56155 2
27 0.390388  0.304806 2.268-07 -—24E-07  —1.56155 2

Notice that the solution converges to the exact solution within the third decimal
pjace (A1 =0.390 & 0.001) by the 12th iteration, and to the sixth decimal place by
(he 26nd iteration. Also note how the iterative solutions oscillate above and below
(he true solution in consecutive iterations. This is a feature of the slope technique,
in which we are approaching the true solution from the right, then from the left,
and so on, as also occurs in the bisection method (Fig. 6.8) for a single variable
nonlinear equation. The solutions obtained with the full Jacobian matrix would
converge with fewer iterations, but with more intensive matrix inversions that
would become increasingly demanding as the number of equations is increased.

Chapter 12 presents applications of nonlinear solution techniques to deter-
mine chemical equilibria involving multiple chemical species participating in
acid—base dissociation, dissolution—precipitation, oxidation—reduction, and sur-
face complexation reactions. Computer packages such as MICROQL (Westall,
1986) and MINTEQ (Allison et al., 1991) implement techniques such as the
Newton—Raphson method and are readily available for solution of a wide ar-
ray of nonlinear equations involving multispecies chemical equilibria in aqueous
systems.

64 SUMMARY

Methods for numerically solving four classes of mathematical models have been de-
scribed in this chapter. Numerical integration techniques, such as the Euler—Cauchy
method, the predictor—corrector method, and the Runge—Kutta method are described
in Section 6.1 and can be used to solve chemical mass-balances ODEs with concen-
tration represented as a function of a single variable, typically time. Initial concen-
trations in the system must be known to initiate these integration techniques.
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Methods for solving partial differential equations, applicable in solving Magg
balance differential equations over time and multidimensional space, were pmge,]{e(i
in Section 6.2. Section 6.2.1 focused on finite difference methods for solving Ppy
formulating forward differencing, backward differencing, and central difl‘erencin'
schemes for the spatial derivative, and implicit and explicit methods to step forwag
in time. Finite element methods for solving PDEs were introduced in Section 6.2
Both techniques for solving PDEs require the statement of initial (temporal) dnd
(spatial) boundary conditions to initiate the iterations. Techniques for simuhiuleoumy
solving a set of linear algebraic equations are presented in Section 6.2.1 as toolg for
implementing finite difference schemes. Solution techniques that address Systems
of nonlinear algebraic equations are presented in Section 6.3 and are typically us@(}
to model complex chemical reactions with multispecies equilibria or higher-orde,
kinetics.

The numerical methods briefly presented here form the foundation of many copy,.
puter codes and simulation packages designed to model contaminant transport apg
fate in the environment. In the applications presented in this chapter, all the input
parameters to the models are assumed to be “single valued,” that is, they have fixeg
or “point-estimate” values assumed to be known a priori by the user. Sing]e-valuedz
point-estimate input parameter values, while easy to incorporate into models, are not
often representative of our understanding of the real world. In particular, modelers
must also consider systematic (seasonal or spatial) variability in model parameter va]-
ues, random fluctuations in these values with no known systematic underlying cause,
as well as uncertainty in model parameters associated with a lack of a priori knowl-
edge of the system. To address this need, Chapter 7 presents probabilistic techniques
for the incorporation of random variables and random processes into environmental
models.

Overview of Probabilistic Methods
and Tools for Modeling

Em;imnmental systems are highly variable in their properties and response to inputs.
Furthermore, there is a great deal of uncertainty about these properties, future inputs,
and TESPONSEs. In this chapter we introduce the basic tools of probability used to
model variable and uncertain environmental systems.

variability refers to the inherent differences in environmental properties that occur
over space and time and from one sample to another (e.g., the differences in exposure,
susceptibility, and risk that occur between one individual and another in a target
populalion)‘ Uncertainty reflects a lack of knowledge of environmental processes
and propertics. While many of the same tools of probability and statistics can be
applied to characterize variability and uncertainty, the need to carefully distinguish
between them is widely recognized (e.g., Bogen and Spear, 1987; Burmaster and
wilson, 1996; Cullen and Frey, 1999), and we are careful to do so in the applications
that follow.

In Section 1.5.1 we characterized deterministic models as those that calculate a
single value for each model output, in contrast to stochastic models that produce a
distribution of values for each prediction. While probabilistic methods provide the
basic building blocks for stochastic models, the distinction between deterministic
and stochastic models is not always clear-cut. For example, the random motjons of
fluid elements described in Sections 5.3 and 5.5 that lead to Fickian and non-Fickian
dispersion are typically aggregated over many fluid elements and treated as determin-
istic processes at the continuum scale. Similarly, chemical transformations that are
stochastic at the scale of individual particles and molecules are usually aggregated, us-
ing kinetic models to provide deterministic representations of bulk reaction processes.
Individual chemical and fluid elements can be statistically simulated to yield the same
results as deterministic process models for transport and reaction; this is the basis for
the population balance method that tracks discrete pollutant particles through the
environment (Patterson et al., 1981; Koch and Prickett, 1993; Visser, 1997).

Probability models describe the likelihood, or probability, of different outcomes
or events. A random variable is a quantity that can take on different values for a
variety of reasons, but with no specific mechanism or underlying cause that allows
an outcome to be predicted with certainty. Instead, the variable is described by a
probability distribution function. When the quantity is ordered in space and/or time,
the probability model must also describe the nature of this ordering. Such quantities
are referred to as random processes. We begin this chapter by describing models for



