
6 Overview of Numerical Methods
in Environmental Modeling

Up to this point, this book has dealt primarily with idealized models of environmental

systems. These models assume uniform geometry, constant system properties, 3n6

inputs and boundary conditions that are either constant over time or are described

by special time-varying equations such as exponential or sinusoidal functions. J6e

enviionmental system is represented in many of these models by a single reactor, such

as a 0D completely stirred tank reactor, a lD plug-flow reactor, ot a2D advective*

dispersive reactor, with the reaction kinetics usually assumed to be first order. For

these idealized conditions, analytical solutions, that is, closed-form equations, sn1

often be derived for the model state variables: concentrations, mass fluxes, or (as

introduced in Chapter 13) human exposure and risk. Howeveq when models are

developed to provide more detailed and realistic representations of systems exhibiting

spatial heterogeneity, temporal variation, and nonlinear reaction kinetics, analytical

sàlutions are generally not available. Numerical solution methods are then needed.

Numerical methods are commonly used to integrate the mass-balance differen-

tial equation for contaminant concentration C, with the objective of determining the

concentration C at a specific location (x, y, z) or at a specific time r' When the deriva-

tive of C appears in the equation with respect to only one variable, usually time (i'e,

dC ldt) or a single spatial dimension (such as dC ldx), the equation is refened to as

an ordinary dffirentiat equation, or oDE. A set of coupled equations for multiple

contaminants (e.g., describing dCy ldt, dC2ldt, etc.) is a system of ordinary differ-

ential equations. Section 6.1 presents methods for the numerical solution of systems

of ODEs. When the concentration derivatives appear in more than one dimension'

the equations are referred to as partial rtffirential equations, or PDEs. Methods fot

solving PDEs, which are usualiy implemented over a spatial system of grid points

or celli, are presented in Section 6.2. This section also presents methods for solving

systems of linear algebraic equations that arise in numerical techniques for PDEs'

Simultaneous nonlinear algebiaic equations are often required to describe equilib-

rium chemistry in environmental models; numerical methods for these systems afe

described in Section 6.3. The numerical methods described in this chapter afe used

to develop deterministic models of pollutant transport employing point esdmarcs for

various input parameters that appear in the mass-bâlan"e eàuations, for example, fluid

flow rates or reaction rate constants. Chapter 7 provides àn introduction to randofll

variables and random processes, which are used in stochastic models to simulate both

variability in the environment and the uncertainty of model predictions.
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.r.tris chapter is intended to provide only an overview of the computational methods

).'iia"r"a necessary for understanding many of the full-scale models presented in
culi"^u"nt chapters. Texts devoted to numerical methods (e.g., Chapra and Canale,

l|'ooioroula" more detailed discussions. Press et al. (1994) explain and outline

"i^ui", algorithms for implementing a wide variety of numerical techniques. A
t'l'"i 

in-A.pttr study of these techniques is recommended for anyone developing

Ïli.t, t" which they are used or for a full appreciation ofthe methods used by others.

6.1 ORDINARY DIFFERENTIAL EQUATIONS

Consider the mass-balance equation for the indoor air pollution problem depicted in

ànupr.t I (Fig. 1.5), as given by Eq' t l'8.1:

v+ : (2in) Ci,u-u - (O"*) Cr f S - kVCi (6'1)
dt

Where Ci represents the pollutant concentration within a well-mixed indoor air com-

nunr.nt, i. Because the indoor air compartment is well-mixed, Ci is independent of

Lration and varies as a function of time only, that is, C; : Ci(t); Ci,u 6 represents

the influent concentration entering the air compartment from the surroundings' Di-

viding both sides of the equation by the volume of the room, V, the equation for the

concentration derivative is obtained:

dCi (0in) C;,u.u * S -(++r)c, (6.2)
dt v

Equation (6.2) is a first-order ODE. The order of the ODE refers to the order of the

deiivative. For example, an equation with derivatives up to and including dzCildtz
is a second-order differential equation. We limit ourselves in this section to solutions

forfirst-order ODEs. Methods for solving higher-order ODEs are described elsewhere

(Hoffman, 1992, p. 296).
For a given set of inputs that define the rhs of Eq. (6.2), we seek a procedure

for moving from a known value of C; at time / to an unknown value of Ci at time

t + A/.r This problem is depicted in Figure 6.1, which shows a true (but unknown to

us) value of CiQ) that we are attempting to reproduce through numerical integration.

Figure 6.la shows perhaps the simplest logical solution to this problem (the one you

might come up with yourself if you were stuck on a deserted island with no previous

knowledge of numerical methods): Use the known slope of the curve at time / to
extrapolate the value forward to time t + Ltl

CiG + Lt) : CiG) + dCildtl, Lt (6 3)

lThis 
can be solved for analytically in the case of Eq. (6.2). In the more general case of nonlinear kinetics,

rnultiple contaminants, and the like, it usually cannot.
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(6.4)
dCi dCi

d d t+^.t,C: Lt
2

+

The first predictor step is identical to the Euler method in Eq' (6'3)' Note that when

i,",,ion;"0.'::lïl:f#i*"*t;l;*.;;Ïl:'.';'lî.:Ëilx"f i;;Til:1

îtr#Ïii:i:,Ï.',iÏi;i:i.#"#*;"*i:ï':i;:',17";"'isob'lained
in this case, ttt" p'"Oi"to' ïi"p it f-pf"menæd for 

"u"h 
of the "I state variables to

.àroo," each of tft" C;ôl"uif*" "à-pttlng 
the correctors' The second corector

step yields modified estimates' which are expected to be closer to the true values

than are the predictor, *ràî*"r, they are still not completely accurate, due to the

nonlinearity of rhe true *ùiiàr, una ih" fu"t that the derivatives at time (r + Àt) are

.irpri.O using only estimates of, the C; (r + A/)'s'

A more formal "p;;;;-i; 
a"'"'iuing the accuracv of numerical integratron

recognizes that two typ"' "i "t'"' 
c'an occurin the transition from time / to t + 

^t 
' The

first,depictedinnigo'"Ë'i'i;k;;" u""un'o'.io/ error'Th\sistheinherentefforof

the method. For the u"Ë' *"ttt"O' the truncatioî *ot t't p::p"l1ïit-to (Ar)2' the

dme step raised to 
'n" '"""tâ n"*er' As such' cutting the time step in half reduces

the effor by a factor oi +. ro.ï" predictor-correctoi method, the truncation e''or

is proportionat t to'l!'-'" 'n"it"àt"i"t 
ttte time step by a factor of 2 reduces the

enor by a factor of g. More accurate integration is theiefàre expected using smaller

time steps and the ptJl;;;;";""to' *Jthod' thun 
"un 

be achieved with the Euler

ttlfiS;, 
truncation effor occurs with smaller rime steps, why not use smaller and

smaller values of A/ until the desired accuracy is achieved? A first' practical reason

is that the computu,io"il*" in"t"u*"' as At is 
'"àu""0' 

(More calculations are needed

tointegrateov".tt"'u*"timeinterval')Asecond'morefundamentalreasoninvolves
thesecond,yp"of"..ot'-'o'una-o6"'ror'The'"tondtermsthatareaddedtoCi(r)on
the rhs of Eq. (6.3) or (6'4) become smaller uni '*utt"t 

as the time step is reduced'

Withalimitednumberofsignificantdigitsusedforthecalculationbythecomputer
(typically 8, or 16 if d;;; precision is lsed)' 

a gÎeater relative elror can occur

as round_off 
"ri-i"ut"îïhigf,er 

fraction of the addend. while the truncation error
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is reduced as Ar is made smaller, the round-off error increases. Furthermore, 6i,
increased relative error is repeated over more, shorter time steps. The net effect of
both truncation error and round-off elror over many time steps is referred to as the

ov erull p ro p a g at i on e rro r.
How can you tell whether a numerical integration is accurate? You do not know ths

true solution (i.e., from an analytical solution); if you did, you would use it! However,

you might be able to simplify your model to a special case, for example, with constant

spatial and temporal properties, simplified kinetics, and the like, for which a knoygl

analytical solution is available. The numerical method should be able to reasonably

reproduce the known solution for this special case. Comparison of numerical solu-

tions to known analytical solutions for simplified, idealized cases is thus a common

and important first step in testing for accuracy. It does not guarantee that the numerical

solution will be accurate for the real, more complex cases that you really care about.

However, it does provide some degree of comfort and assurance. If the model can-

not reproduce the analytical solution for simplified cases, then something is clearly

wrong-either inherently with the method or in its computer implementation.
A second way to diagnose the accuracy of a numerical integration procedure

is to evaluate the model with varying time steps. Initially, the time step is chosen

based on the time sçales of variation in model inputs and responses. For example,

a model with variations in emissions, transport terms, reaction rates, and resulting

concentrations over time scales of minutes and hours will typically require time steps

of seconds for numerical integration; models with variations over weeks, months,

and years typically require time steps of days or fractions of a day. A high estimate

of the time step is first selected, the model executed, and the results recorded. A
second, smaller time step (e.g., one-half of the value of A/ used for the first test

run) is used and the results compared to those from the first case. If the initial time

step was indeed too large, the results should be different. Successively smaller time

steps are tested and the differences between runs should diminish, until reducing

the time step further no longer yields a change in the results. This indicates that a

sufficiently small time step has been selected and that accurate numerical integration

has most likely been achieved. Eventually, reducing the time step further should

once again yield changes in model predictions, as round-off error comes into play'

The assumption is that initially reductions in At act to reduce the truncation eror
and that round-off error does not become significant until the time step is reduced

to a very small value. This is usually the case, especially if the initial time step

is chosen to be "conservatively large" for the problem under consideration. Other

methods are available for diagnosing model accuracy, such as checking the model

for mass balance. These and other quality control procedures for model evaluation

are illustrated in the examples presented in this chapter and discussed further in

Chapter 14.

The Euler and the predictor-corrector methods are among the simplest of the avail-

able procedures for numerical integration ofODEs but are not especially accurate. For

some problems, they can yield unstable results. Instability occurs when the results

deviate so far from the correct values that wildly diverging or oscillating predictions

are made. Instability is not easy to define, but you know it when you see it. More

I
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^^nhisdcated 
numerical methods may be able to maintain stability and achieve sig-

]ià.un,fy greater accuracy. Some of these methods utilize model results prior to /
',')'-o . attime / - Ar and t - 2 Lt) in making the transition from I to r * Ar. Use

li|f,rr" multiple values allows the higher-order shape and associated derivatives of

-'i. function to be taken into consideration. While such multistep methods are more

)""rrrut",theyarenotself-starting,sinceattime/:0,valuesatt-Ltandt-2A,t
iiJnot uuairaAne. A self-starting method is thus needed for the initial calculations over

i. n"t few time steps. Some of the stability and accuracy of multistep methods can

I" achieved by self-star"ting methods if each time step is broken up into partial steps.

Irong the most widely used of these partial step procedures is the Runge-Kutta

rnethod'
The Runge-Kutta procedure is actually a family of methods, each with different

u$def" depending on how many partial steps are utilized within each time step. The

fourth-order Runge-Kutta method is especially popular, due to its very high accuracy

and stability, yet relative simplicity. The accuracy of the fourth-order Runge-Kutta

rnethod is related to that of Simpson's method for numerical integration, illustrated

in Figure 6.2. An accurate estimate of A : I f @) dx (i.e., the shaded area under the

curve in FiS.6.2) is computed using Simpson's rule as follows:

A : (Lx/6)lf @) + aJ @) + IG)l (6.s)

Wherea,b,andc areevenly-spacedpointsintheinterval (x,x* A.x). Innumerical

solution of chemical mass-balance ODEs, the function /(;) conesponds with the

time derivative dCildt that is integrated over a time step, A/, to determine the

unknown function C; (r).

f(x)

f(x)

f(a) f(b

Area = A

x

A,x=c-a

Figure 6.2 Formulation of Simpson's method for integration tEq. (6'5)l

abc
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As in Simpson's method, the fourth-order Runge-Kutta method similarly divides

the time step in half and computes values of C(t) at the next time step from the

derivatives, \, Fz, F3, aîd F4, asi

ci7 + Lt): ç,171+ à [ri +2F;+2F; + Fi) (6.6)

where

oi :I
o;:l

4el I o,
dt lt.ct:ctftt )

dcil I
T l, *ro,,rr.r':c,r, r ro.s ri -l

oç,1 I
T l,+tt, tzt.cr:Cru)+0.s Fj-l

Lt

F; Lt

F;
dCt

dt
Lt

t -lL.t,Ci:CiQ)*Fi

As with the predictor-corrector method, when the Runge-Kutta method is applied

to a system of ODEs for a suite of constituents, the F1 's must be computed for each

constituent j : l, ..., J,before moving on to calculate each of the F/'s, and so on.

The derivative of Ct used to calculate each of the F's is evaluated with model inputs

set at the indicated times (t, t + Lt 12, t + Lt 12 and t * At, for \, Fz, F3 and Fa,

respectively) and with "predictor" values of C; computed as shown. The fourth-order

Runge-Kutta method has an eror proportional to (Al)5, so very high accuracy can

be achieved as the time step is reduced.

EXAMPLE 6.1 NUMERICAL INTEGRATION OF A SIMPLE
FOOD CHAIN MODEL

To illustrate procedures for numerical integration and the sensitivity of numerical

results to different methods and time steps, the idealized system for nutrient uptake

and growth of phytoplankton and zooplankton shown in Figure 6.3 is considered'

[This example is based on Section 14.13 of Chapra and Reckhow (1983).] The

model simulates the cycling of phosphorus between three species: inorganic phos-

phorus, p1; phytoplankton, p2; and zooplanktoî, pz. The phytoplankton grow via

uptake ofinorganic phosphorus and are subsequently consumed by the zooplank-

ton. The zooplankton grow as a result of this consumption, but die and degrade
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Zooplankton Growth,
Phytoplankton Loss

Zooplankton Death,

Nutrient Replenishment

Phytoplankton Growth,
Nutrient Uptake

Figure 6.3 Simple phosphorus food chain cycle for Example 6.1

back into inorganic P. Lotka-Volterra predator-prey relationships are defined for

the phytoplankton and zooplankton, with nutrient uptake and growth dependent

on both the "prey" (inorganic P for the phytoplankton; phytoplankton for the

zooplankton) and predator concentrations. The concentrations of each of the three

,prËl"r are represénted in terms of their phosphorus content tM(Ù L-31.

The model assumes nutrient (inorganic phosphorus)-limited uptake and growth

of the phytoplankton, described by Michaelis-Menten kinetics (see Chapter 12):

Phytoplankton growth rate: km(nftA) ,,

where k,,, (7-t) is the maximum growth rate and K, tM(P) a-:1 is the half

saturation constant, equal to the nutrient concentration at which the growth rate

of phytoplankton is half of its maximum value. The phytoplankton are consumed

by zooplankto n gr azing:

Zooplankton growth rate: kzz Pz Pz

where ft23 t{M(P) L-3}-1 f -ll is a second-order rate constant, referred to as the

zooplankton feeding rate. The rate of zooplankton death and consequent nutrient
replenishment is given by:

Nutrient replenishment rate : kz P3

where k. (f-t) is the first-order zooplankton death rate.
The phosphorus-phytoplankton-zooplankton food chain is simulated for a

batch reactor, considering only kinetic processes with assumed constant rate coef-
ficients. In real aquatic systems these kinetic processes are supplemented by a sea-

sonal pattern of loadings and discharge from the water body, with temperature- and
light-driven variations in the rate constants. Examination of the growth patterns

Zooplankton
p3

Phytoplankton
p2

Inorganic
Phosphorus

p1
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and nutrient cycling predicted to occur in a closed system is nonetheless useful

to begin to understand the dynamics and cyclical nature of the food chain. This

idealized system also provides a good illustration of the behavior of numerical

solutions for ODEs.

The three simultaneous, nonlinear ordinary differential equations for the sys-

tem are

dpr Pr

l:kzPt-k^**^Pz

ry : k^=J)- pz - kzt Pz Pz
dt Ks -l Pt

T:kztpzpz-k,pz

(61)
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Figure 6.4 Numerical solution of the phosphorus food chain model using the predictol-

corrector method.
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Following Chapra and Reckhow (1983), the following coefficients are assumed for

tt"moa"i, k,, : 0.5duy-t; K, : 2mg P lm-3; kzz : 0.1(mg P/m-3)-r day-r;

aîd k, :0.5 day-r: with initial conditions: pr (0) : 99.8 and pz(O) : pz(O) :
0.1 mg P l^-3.

Numerical simulation results for this model are calculated using the predictor-

cofl.ector method and the Runge-Kutta method, with results shown in Figures 6.4

and6.5,respectively. For each method, time steps of A/ : 0.4, 0.1' and 0.01 days

areutilized. Figures 6.4 and 6.5 also show the computed total P concentration:

nr1) : pt(t) + pz|) + p3(r); which, because the system is closed (and constant

uolor"i, should remain equal to the initial value of 100 mgP/m-3, as long as an

accûrate mass balance is maintained for the system.

As indicated in the figures, the results are sensitive to the time step chosen.

Wth too large a time step, inaccurate results are obtained, especially with the less
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Figure 6.5 Numerical solution of the phosphorus food chain model using the fourth-order
Runge-Kutta method.
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accurate predictor-corrector method.2 If too large a time step is chosen, inegu-
lar results can be generated, with significant deterioration of the mass balance
and (though not evident in these simulations) even predictions of negative co1_
centrations. when state variables that must be nonnegative violate this physicnl
requirement, this is a clear indication oferror and usually a precursor to instabil-
ity. It is tempting in this situation to consider simple corrections to the algorithrn,
such as setting all predicted negative concentrations equal to zero or to a very
small number. However, such ad hoc corrections generally introduce further mass-
balance errors into the solution. Rather, the preferred approach is to try smaller
time steps or utilize an alternative, more accurate solution method.3 These steps
and the results in Figures 6.4 and 6.5 illustrate the type of trial-and-error test-
ing that typically must be done when developing and implementing a numerical
solution.

Finding the right time step to use in solving systems of ordinary differential
equations is particularly difficult if the system is stiff, meaning that changes in ths
magnitude of some of the state variables occur orders of magnitude more quickly than
for other variables. The mathematical consequence of stiffness is that the solution to
a system of ordinary differential equations requires inverting a matrix that is nearly
singular. Chapter 11 addresses solution techniques for stiff systems of ODEs because
the rate equations for ozone formation in the atmosphere are a prime example of a

stiff system.
Over the past decade, a number of convenient and powerful mathematics soft-

ware packages have become widely available. Mathcad (MathSoft, 1997), Matlab
(MathWorks, 1995), and Mathematica (Wolfram, 1991) all include functions that
will numerically integrate systems of oDEs. In addition to Runge-Kutta schemes,
Mathcad and Mathematica provide specialized functions with adaptive time steps that
can handle stiff systems. The primary limitation of these software packages is that
they offer relatively little flexibility for formatting model inputs and outputs. How-
eveE when such flexibility is not required, they offer a useful shortcut for numerical
analysis.

2 The "correct" results are understood to be those achieved with an accurate method at small time steps
(though not /oo small, due to round-off error), exhibiting stable and repeatable behavior, and maintaining
overall mass balance. See also Figure i4.5d of Chapra and Reckrow (1983, p.262).
3 Another trick that can be used when negative concentrations are simulated is to transform the problem
to one described in terms of variable(s) that ensure that the positivity requirement is met. For example,
dividingbothsidesof Eq. (6.2)by Ç yieldsanequationintermsof thetransformedvariable yi:ln(c),
since

dCi dlnCi dYi (Oi")C^.1 * S

Cidt dt dt Texp(I;) -(+.,
This model may be solved in terms of I; and subsequently transformed back to the targeted variable,

C;(l) : sxply lt)1. No matter what the value of YiQ), CiG) remains nonnegative.

l
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6.2 PARTIAL DIFFERENTIAL EQUATIONS

.rrhpn mass-balance equations are specified with derivatives in more than one dimen-

Ï^.-^r""n as time, and one or more spatial dimensions for dynamic models or more

'i*' o"" spatial dimension for steady-state models, the system is then described by

i"riiot dtn"r"ntial equations. Consider the equation for two-dimensional advective-

"dirp.*iu" transport with first-order decay:

ac ac azc - a2c

E : -u; + D' 
ax? 

+ DY af - kc (6'8)

ln this application concentration variations are considered over time and in the "rr and

,,-airections, that is, C : C(x, y, /). While analytical solutions to this equation are

ivallable when u , D, , D y, and k ate constant over time and space (as presented in

ônapter 5, dependent on the assumed boundary and initial conditions), numerical

mrttroat are required when these parameters vary temporally and/or spatially. The

methods involve discretized calculations over both the temporal and spatial dimen-

,ionr. T*o of the most common methods for implementing this type of solution, finite

difference and finite element methods, are described in this section.

6.2.L Finite Difference Method

The finite difference method solves the mass-balance equation(s) by forcing them to

be satisfied at a set of discrete points in space. Figure 6.6 illustrates a two-dimensional

grid that might be used to solve Eq. (6.8). Nodes in the longitudinal (x) direction

ire indexed by l, while nodes in the transverse (y) direction are indexed by j, with

C(i, j,t) indicating the concentration at grid point l, j at time /. The key step in

the finite difference method is to express the derivatives for concentration at each

point i, j as appropriate differences between concentrations at adjacent nodes. For

example, for the ûrst (advection) term on the rhs of Eq. (6.8), the first derivative of
C(i, j , t) with respect to x is needed and could be expressed using either:

ôC(i, j,t) C(i +1, j,t) - C(i, i,t) (6.e)
ôx A,x

or

ac1, j,t) c(i, i,t) - c(i - r, i,t) (6.10)
3x Ax

where Ax is the distance between nodes in the .x direction. Equation (6.9) uses

forward dffirencing for the advection term. It approximates the derivative at point
i, j using the difference between the concentration one node downstream of the point
(in the direction of advection) and c(1, j, r). Alternatively, Eq. (6.10) uses bachuard
dffirencing since the first derivative is computed by taking the difference between

C(i, j,t) and the concentration at the node one step upstream. Neither approach is

expected to provide an especially accurate estimate of the concentration derivative
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Figure 6.6 Finite difference grid with 6 x 6 (solid) node system. Image nodes (open) added

for subsequent implementation of boundary conditions.

at point l, j, especially if its value is changing rapidly as a function of x. A third

alternative is achieved by taking the average ofthe forward and backward differencing
equations:

3C(i, j,t) forward * backward C(i + l, j,t) - C(i - 1, j,t)
ôx 2Lx2

This approach, referred to a s central dffirencing for the advection term, does not even

use the value of the concentration at point i, j; rather, it calculates the derivative bI

drawing a straight line between the concentrations immediately up- and downsffeail
of the target location.

Referring back to the finite cell methodintroduced in Section 5.7 ,the same terrnln-

ology-backward, forward, or central differencing-was used to describe the weight'
ing of concentrations passing with the advective flow across the interface of two cells'

There is a clear parallel between the finite cell method, where concentrations arc a't'.

eraged over volumetric compartments and mass transport occurs between them, artd

the finite difference method in which mass-balance equations are satisfied and Çor'

centrations computed at points in space. In the latter, the points are still thought to be

representative of the spatial domain around them, that is, the degree of spatial rep-

resentation is still limited by the coarseness of the grid. Likewise, many of the safls

issues that arise with respect to accuracy, stability, and numerical dispersion in the

finite cell method apply to the finite difference method, especially with regard to tho

use of backward, forward, or central differencing. These issues are addressed in rnrtt"

detail below First, equations for the remaining derivatives in Eq. (6.8) are developetr'

The dispersion terms in Eq. (6.8) require a differencing expression for second

derivatives. Recognizing that the second derivative describes the rate of change in the

first derivative with distance, it can be computed by taking the difference between the

forruu.d difference estimate of the first derivative (which best describes the value of

the first derivative midway between node i, j and node i + I' i) and the backward

difference estimate (for the point midway between node i, j and node i - l, i), and

dividing by the distance between these points, A;:

Ic(i 
+ I, i,!r c(', i, 1)] _ 

[
C(i..j,t) -C(i - 1, j,1)l

Âxla2c(i, .i, t)

0x2 Ax

C(i + I, j, t) - 2C(i, j,t) + C(i - 1, i, 1)

(ax)2
(6.12)

A similar expression describes the second derivative for the dispersion term in the y

direction:

azc(i, j,t) c(t, i + 1, /) - zc(i, j,t) + c(i, i - l,t)
-Ë (6'13)

The second derivative in each case is estimated by adding the concentrations at the

adjacent nodes and subtracting twice the concentration at the target node, and then

dividing by the square of the internode distance.
The final derivative that must be specified for dynamic solution of Eq. (6.8) is the

time derivative. Indexing discrete points in time by t : I,2, . . .k, fl + 1, . . . , where
n is the current time in the simulation, the time derivative is first expressed using a
simple Euler expression (forward differencing in time):

SC(i, j,n) C(i, j,n'17) - C(i, i,n) (6.14)
at Lt

Reananging to solve lor C(i, j, n * l):

C(i, i,n * l) : C(i, i,n) +"":l'n' o' (6'15)
At

Finally, substituting for the rerms on the rhs of Eq. (6.8), including the central differ-
el]ce expression for the advection term, the following equation is obtained:

C(i, i,r r r) : ççi, 1,11

,(#)
8x

C(i,j,n)

(6.11)

-u
f c(t + t,.i,n) -c(t - l, i.n)1
t2^rJ

*D,
C(i + 1, j, n) - 2C(i, j, n) + C(i - r, i, n)

(Lx)2

C(i, j + t, n) - 2C(i, j,n) + C(i, j - r, n)

+^r

*Dv (Ly)2 - kC(i, j, n)

(6.16)
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Equation (6.16) is explicit, that is, C(i, j,n * I) at node i, j attime step,? + I i"
computed solely from values of C available at the currenttime n, at node ;, j a*
the four surrounding nodes. While relatively easy to implement, explicit solution.

may exhibit problems with stability. These problems are discussed in the folloyylno

section, followed by presentation of an implicit solution method that addresses theq"

Stability, Numerical Dispersion, and Implicit Solution Methods As with the 6ni1.
cell method, linite difference solutions using central differencing are prone to insta-

bility when applied to highly advective, low-dispersion systems. Central differencinp

exhibits inherent "static" instability whenever the grid size is too large relative to 16i

ratio of the dispersion to velocity. Stability is maintained when

(6.1?)

This is equivalent to requiring that the Peclet number be less than or equal to 2, where

the Peclet number is defined as Pe : A,x u I D. Highly advective (high Peclet number)

domains, such as the riverine portion of a coastal water system, thus require finer
grid spacing. This requirement applies when implementing either a steady-state or

a dynamic solution. When a dynamic solution such as Eq. (6.16) is implemented, a

further requirement is placed on the time step, A/. To avoid dynamic instability, the

time step must be chosen so that (for a one-dimensional problem):

(Ax)2
À/ < ._ (6.18)

2D

For a two-dimensional problem [such as Eq. (6.16)], the restriction is greater still,

with the two in the denominator of Eq. (6.18) replaced by 4.

One approach for avoiding the restrictions on Àx imposed by the static stability

requirement tEq. (6.17)l is to use backward, instead of central, differencing. However,

as with cell models, this introduces numerical dispersion. Backward differencing

computes the advective transport from a value of the derivative further upstream. The

resulting error has the same effect as increasing the dispersion coefficient, moving

additional mass from nodes with high concentration to nodes with low concentration.

In the dynamic solution the magnitude of the numerical dispersion is given by:

I / aÂt\Dn: ;u ax( I - 
"' -' I (6.19)

z \ L*)
'When backward differencing is employed to address stability problems, the extra

numerical dispersion must be recognized. It may be necessary to reduce the input

values of the dispersion coefficient(s), that is, reduce assigned values of D (D* andlor

Dr,) so that the assigned values plus the numerical dispersion introduced through

the numerical method equals the level of dispersion targeted for the problem. If the

numerical dispersion exceeds that targeted for the application, this clearly will not

work (negative dispersion coefficients cannot be assigned). Furthermore, in problems

2D
u

Lx

I

C(i,n + l)
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C(i,n + l) Partially
Implicit

n+\.1 <-.n+l .

n.
i-l

C(i, j,n + 1) : C(i, j,n)

lime t

i

a

i

na

l+1 i-r i+1

Explicit Implicit

^,--.o 6.7 Explicit versus implicit solution of a finite difference problem over time for a
n1lÏ}" .r" aiÀensional system. The explicit method uses only information available at time

1u.ii"io",. derivatives and move forward to Time n l1' (Arrows show flow of information')

i-ii"ir ..rn.as compute derivatives from the model state at time t? * 1 (and at time n if

;ffi;ii, implicitt so that solution of simultaneous equations is required to move forward to

time r? + l'

x

with variable time steps and complex grid systems, it may be difficult to ascertain the

,Tgnitua" of the numerical dispersion. The use of backward differencing is thus an

irj..f"., rofution to stability problems, but one that in some cases cannot be avoided,

especially when solving steady-state models'
'for dynamic models, an alternative approach is available for maintaining stability'

ff,. expilcit approach depicted in Eq. (6.16) may be replaced by an implicil method.

itr f."y difference between explicit and implicit time integration is illustrated in

Figure-1j. The explicit method uses available node concentrations from time n to

,o"rpur" all concenirations at time n * 1. The implicit method expresses the equations

for Àncentration at each node at time n 11 in terms of concentrations at other nodes

atrime n * 1. The equations are implicit because the information needed to move

forward from time n totime n * 1 is not all available attime n;rather the equations for

the concentrations at the different nodes at time n * 1 must be solved simultaneously'

A fuily implicit solution defines all terms in the time derivative, àC l\t, using

concentrations (and model inputs and parameters) at time n * l. The fully implicit

equivalent of Eq. (6.16) is given by:

(i + l, .j,n-11) - C(i - I' j,n + 1)

-u 2Lx

(i+l,j,n*l)-C zc(i, j,iz * 1) f C(i - 1, i,n + l)
*D* (Lx)2

a I,n * l) - 2C(i, i,n -l D + C(i' j - t'n * l)
- kC(i, j,n-t t)

*Ar

lDt
c(i, j

(Ây)2

(6.20)
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If model inputs a, D, , Dy, and k vary with time, their values at time n * I would qh.
be used in Eq. (6.20).

A partially implicit solution defines the time derivative as a weighted average qf
values computed using concentrations (and model inputs) at times n and n { I'

c(i,i.n* t):c(i,i,n\t LI|{"#1,*, *,' -",f1,,} 1g.2r)

The case where cy : 0 corresponds to the explicit method, a : 1 to the fully implicit
method, and 0 < q < I to a partially implicit solution. The special case in whiqh
a : 0.5 is known as the Crank-Nicolson method. The partially implicit solution

conesponding to the explicit Eq. (6.16) and the fully implicit Eq. (6.20) is

C(i, i,n + 1): C(i, i,n)

C(i + l, j, n * r) - C(i * 1, j, n -t 1)
-u

C(i + 1, j,n t r) -zc(i, j,n + t) + C(i * t, j,n-t t)

2Lx

(ax)2

C(i, j + t,n t- t) -2C(i, j,n * r) + C(i, j - 1,n-t t)
(Ly)2

* Ata +D,

*Dy * kC(i, j, n r r)

C(i + t, j,n) - C(i - t, j
-Lt 2Lx

(i + t, j,n) -2C(i, j,n) + C(i - 1, j,n)
+ A/(1 - cv) lD* (Lx)2

C(i, j +t,n)-2C(i, j,n)+C(i, j -r,n)-lDv
(Ày)2 - kC(i, j,n)

Implicit or partially implicit solution methods are very effective at maintaining

stability. However, they increase the computational burden signiflcantly. For a system

with N total nodes, a set of N simultaneous equations must be solved at each time

step. Effrcient methods for implementing this type of solution are discussed below.

First though, the remaining building blocks of the solution, the initial and boundary

conditions, must be specified.

Specification of Initial and Boundary Conditions With any of the finite difference

solution methods thus far described, initial and boundary conditions are needed. For

dynamic simulations, initial conditions are needed for the model state variables (e.g',

contaminant concentrations) at all nodes at time / : 0 in order to initiate the computa-

tions. In some problems these conditions are unknown or highly uncertain, especially

when the model is used for long-term simulations involving historic reconstruction.

Even when the primary interest is in recent, current, or future values predicted by the

I

t6.22)
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r^1 historic conditions, perhaps beginning many years earlier, may be needed to
n?o.'I'i" 

""tculations. 
In some cases accurate selection of these initial conditions

itt']:::;; n"..sru.y-rhe model equations may have a short enough "memory" that
mtl lli"i "".aitions do not influence the solution. This is fortunate, especially if you

:n:,:'ffi; t"f"rmation for specifying the initial conditions' For other problems, the

ltli"t'"."ait"ns do matter, and they must be determined as part of the calibration

l'ïlr*.,.'. estimarion process. The only way to tell is to try solving the equations

1|,"illff"r"n, initial conditions and see how the solutions differ.
.ti;;;;;tt 

conditions are required to specify the system state variables and/or their

r^"ivarivos (e.g., concentrations and mass flux conditions) at al1 system boundaries'
ti;'. 

u iutiurrrl. or a steady-state solution is implemented' Consider the set of

:l:::;;," nodes identified in Figure 6.6. Along the lefrhand side of the domain

Y.i:;:'i : I ). vatues of C(i - I, i,) are off the grid and unavailable. How then can

llii;*uJ or central differencing expressions for the first derivative tEqs. (6'10)

::iï.ii;;;;*ectivelyl or the expiessi'on for the second derivative tEq' (6'12)l be

iii,,n"a in the mass-balance equation since these both include C(i -I' i, r)? Similar

Ï,.,nf .rr arise with the identification of C (i, j - 1, t) for nodes along the top row'

ïi,"1 t.l. r) for nodes in the last (right-hand) column, and C(i, i + l, t) for nodes

u'fàng tn"ïoitom row. A creative solution is needed for this dilemma.- 
T-hree types of boundary conditions may apply:

Type 1, or Dirichlet boundary conditions: Here the model state variables are spec-

ified,forexample,theconcentrationsalongtheboundaryareknown(atall
times);

Typn 2, or Neumannboundary conditions: The derivatives of the model state vari-

ables are known. In the case of advective-dispersive transpofi, this involves

specificationofthespatialderivativeoftheconcentrationnormaltothe
boundary, either ôC I àx, 8C I ôy, ot àC I 3z'

Type 3, Cauchy, or mixed boundary conditions: Linear combinations of the state

variables and their derivatives are specifled'

When the concentrations along a boundary are known, a Dirichlet boundary condition

is used. Given the fluid flow tate, Q: uA, this is equivalent to specifying the advec-

tive flux across the boundary, : uAC,whereA is the cross-sectional area associated

with the grid point (normal io the boundary). A Neumann boundary condition is used

to specifj, thË dispersive flux across a boundary t-DA@C lax)l' since it involves

flxing thà value of the derivative. The total (advective + dispefsive) flux across a

bouùary, uAC - D A(6C lSx), is specified using a mixed boundary condition'a

aconfusion 
may arise in recognizing that advection at the boundary is determined by the concentration

at the boundary and not the càncentration derivative since the term representing advection in the mass-

balance equatiân includes the derivative. However, in the derivation of the mass-balance equation, this

term actu;ily expressed lhe change in advection that occurs at the point, leading to mass accumulation

or loss, and notihe advection acioss the point itself. Similarly, specifications related to dispersion are

implemented by fixing the first derivative, even though the second derivative appears in the dispersion

term of the mass-balance equation.
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To implement a Dirichlet boundary condition, the concentrations along the appro-

priate boundary row or column are set to their known values throughout the calcu,

lation. To implement a Neumann or a mixed boundary condition, image nodes q.
added as an extra row or column beyond the grid boundary. Concentrations at these

grid points are set equal to the values necessary to maintain the known flux (total 
s1

dispersive) across the boundary. The exact equation used depends upon the type of
differencing used to represent the derivatives. The steps taken to specify boundary

conditions and associated node calculations are illustrated in the following example.

EXAMPLE 6.2 BOUNDARY CONDITION SPECIFICATION
FORA FINITE DIFFBRENCE MODEL

To illustrate different types of boundary conditions and how they might be ip-
plemented in a finite difference solution, consider once again the system depicted

in Figure 6.6. The following assumptions are made for each boundary, with the

indicated implications for numerical computation.

1. Concentrations are known at all times along the lhs of the domain (where

i : l) and along the bottom boundary ("1 : 6). The mass-balance equation

lBq. (6.22)l is not needed for these nodes. However, the known values at

these boundary points are used when implementing Eq. (6.22) for the nodes

in the second column (i : 2) and for the nodes in the next-to-the-last row

(j : 5), since these known concentrations constitute the respective values

of C(i - I, j,n) (for calculations in the second column) and C(i, j + l,n)
(for calculations in the next-to-the-last row). As a result, given the 6 x 6 grid

in Figure 6.6, the number of equations that must be solved is reduced by

6 * 5 : I 1. The use of type I boundary nodes thus reduces the number of
equations that must be solved. Note that the total fluxes across the upstream

and bottom boundaries are not specified since the derivatives (and with them,

the dispersive fluxes) across these boundaries are not input, but are computed

as part of the model solution.

2. Assume that zero fluxes occur across the top boundary and the down-

stream (righrhand) boundary. Since there is no flow across the top boundary

and the advective flux is therefore zeto (by definition), this is equivalent to stat-

ing that the dispersive flux across the top boundary is zero. At the downstream

boundary, where fluid flow leaves the system, the total flux is set equ alto zeto'S

In both cases a set of fictitious image nodes is needed along the boundary, at a

5 Like the semi-infinite column boundary condition used for one-dimensional analytical solutions (ôC/â.r

: 0 at x : oo), this boundary condition only makes sense when the downstream boundary is "far

downstream," so that the concentrations computed there are not really of concern and have little effect

on the computed concentrations that are of interest, further upstream. A bigger grid system, extending

further downstream in the x direction, may be necessary to accomplish this, and this assumption should be

tested by varying the length of extension to ensure that the downstream boundary does indeed not affect
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disBnce Ày above the top row and Ax to the right of the last column. Assuming

ûtatthe central difference expression is used to define the first derivative fas it

is in Eqs. (6.16), (6'20), and (6.22)1, the concentrations at the image nodes are

cornPuted as follows:

For the top boundary: Beginning with the equation for the dispersive flux,

AC_ DrA r:o
and substituting the appropriate node concentrations into the central difference

expression gives

- D,,Alcri'z'n)- - c(i'o'n)l 
- sL z\v I

wltere j : 0 refers to the image nodes in the row above the top boundary.

This equation can be solved for the image node concentrations at each time

step. In particular, the zero-dispersive flux requirement can only be satisfied

when the image node concentrations are set equal to those of their "partner"

nodes in the second row:

C(i,0,n): C(i,2,n)

For the downstream boundary: Beginning with the total flitx equation

uAC - o.eaf :o

and substituting the appropriate node concentrations

uACr.' i' n) - o-olc(t' i''!' c(s' i' n)l 
- o-' L 2Lx I

yields the desired expression for the image node concentrations [C(7, j, n)l at

each time step:

c(7, i, ù :lryl .,u, ;. n) - c(5, i, n)

Setting the top and downstream image nodes as indicated above implements
their respective no-flux boundary conditions but does nothing to reduce (or
increase) the number of equations that must be solved. Thus, for the 6 x 6 grid
system in Figure 6.6, atotal of 36 - lI : 25 equations must be solved at
each time step. With the explicit method, each of the 25 equations is solved
individually at each time step, as in Eq. (6.16). With the implicit or partially
implicit method, the 25 equations must be solved simultaneously at each time

I
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This example does not exhaust the different types ofboundary conditions g1u,

might arise in environmental models. Variations can occur in different physicnl

systems and at different media interfaces (in problems involving mass transpol
across media). A further example of boundary condition selection and implernsn-

tation is found in Chapter 9, where a finite difference model is used to simulate

groundwater flow and contaminant transport. In each case, the boundary condition

and its implementation in the model must be deduced from the underlying mass or
momentum conservation and transport conditions assumed at the boundary. When
poorly understood or highly uncertain boundary conditions have a significant im-
pact on the overall mass balance of the system and predicted concentrations 31

points of interest, it may be necessary to determine at least some of the boundary

conditions through a model calibration or parameter estimation effort. Methods

for parameter estimation of unknown or uncertain model coefficients and inputs

are presented in Chapter 14.

Steady'State Solution Consider now the steady-state two-dimensional advective-

dispersive transport problem. The concentration time derivative in Eq. (6.8) is set

equal to zero:

o: -uY + D,(: + Dyt: - kc (6.23)
6x ^0x2 'ôy'

This equation must be satisfied at all nodes. The same differencing expressions are

used for the spatial derivatives and the boundary conditions as implemented above.

Using central differencing for the advection term, Eq. (6.23) becomes

0: -u
[C(r + l. l) - C(r - I, l)l
t 2^. )

*D,

*Dy - kc(i, j)

Note that the time dimension (n) is no longer included. The equation is rewritten to

isolate C(i, j) on the lhs:

lc(i,.i+ r) - 2c(i, j\ + c(i, j - l)l
L (ay)2 I

c(i, j) : (,-,, lry] * r.tffit
*,"fffillW+ffi+rl 6zs)

For the example system above, the boundary conditions again determine known con-

centrations for the first column and the bottom row. Similarly, image nodes arc added

above the top row and beyond the last column with appropriately fixed concentrations

-1
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,'':i",#:"î:lî:ffi ,:ffi ,îî:',ff #Ï#ïîÏ,ï:::T:,"f=iiilJii:f ii
t'",ii Ïii.r"Ïnïir" ain"."nce or finite cell methods require solution of a set of

ffi lryrq1t*,,m:;:::*?J"'îï"ff*i:Jir';iiJ:î:ïl:ïiff i;l:"i;
quitt^::: ;il;;;";;iÉ modets with implicit methods require solution of a set of
rifne )twr'

.im,lun"ou,equatronsateachtimestep.Wenextillustrateaparticularsetofiterative-'.^thodstlTatareespeorallyusefulwhensolving..Sparse',systemsofequationsofthe
ttll-'""nrid"t"d thus far'
ryy'""'

fieradve Solution *t'1"!: f:' Simultaneoy'1^"Linear Algebraic Equations In the

exampleabove, 
a ser or.25 simultaneous equations must be solved at each time step

-,,*^.lomenta(oartially)implicitsolution,oroncetodeterminethesteady-state

::,Ïffi'ffir" à"tri* i*"rrion or related procedures can be used to accomplish
t:i:';;t. 

oroblem is especially suited to solution using iterative techniques' These

illi*""i t" relatively easy to implement when the problem matrix is sparse' as

^^,,rc when the mass-balan"" 
"quuiion 

for a node includes concentrations at only

:i:ï"J;;;rsrem nodes: typicaùy the upsrream and downstream nodes for a one-

â**raîr,i-ut".. tt e fou. surrtunding nodes for a rwo-dimensional problem, or

,fr, ri^ tutt"tnding nodes for a three-dimensional problem' 
-

in. n.rt step in an iterative solution is to isolate the targeted unknown state

uu,iult",onthelhsofeachequation,withoneequationforeachoftheunknowns.
Thus, for the dynamic moaetïitn implicit solution described above, Eq. (6'22) is

,.*,l,,"nforeachofthe25nodesbymovingalltermsinvolvingC(i'j'n*1)tothe
hs of the equation:

cft , j. n+ ri 
{r 

* o, .l# * !orr,. 
-] 

} 
: c(i, i, n)

C(i+r,j,n+t) - C(i - l, j, n-t t)
-u 2Lx(6.24)

c(i+t,j ,n-tD+C(i-t,i,n*.l)
+ Lta i_D, (Lx)2

c(i, j + r, n*1)tC(i'j-1,nf1)
-|Dv (av)2

c(i+r,j ,n) - C(i - r, i,n)
-u 2Lx

C(i + l, i,r) -2C(i' i ,n) 't C(i - r, j,")
(Âx)2*D,

- 2C(i, j, n) + C(i, i - r, n)

+ ar(1 - d)

-|Dv
c(i, j +r,n)

(av)2 - kc(i, .i, n)
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Dividing both sides of the equation by

{'*o,"1#.#.r1l'
yields the targeted expression, with C(1, j, n + l) only found on the lhs

1

C(i, i,n + 1):

X

-u

(C(i,j,n)lA;a *D,

tt'a(#*ffi*o)
f C(, + l..j,n-l l) - C(i- I, i, ir + l)l
| 2Lx l

C(i + t, j, n + t) + C(i - t, j, n -t r)
(Âx)2

C(i, j + t, n * t) + C(i, j - t, n t- r)*Dv (Ly)z

-u

ID,

IC(r + t, j,n) - CG - t, j,n)]
I ztx I

+ 
^r(1 

- û)
C(i + I, j,n) -2C(i, j,n) + c(i - r, j,n)

(Lx)z

C(i, j +t,n)-2C(i, j,n)+C(i, j -r,n)*Dv
(ay)2 - kC(i, j, n)

Equation (6.26) looks daunting but is easy to implement in the iterative solution
framework. To do this, the full set of 25 equations corresponding to each unknown
value of C(i, j,n * l) is written, an initial guess for each of the C(i,j, n * 1) is

made, and the equations are solved repeatedly over many iterations until convergence

is achieved. That is, beginning with an initial guess, C(i, j, n * l)0 for each of the

25 nodes where solution is required, values of C(i, j, n t I)t are computed, values

of C(i, j,n * I)z computed from these, and eventually C(i, j,n + l)m+t computed
from the C(i, j, n * 1)'' until:

c(i, j,n+r)^+t -c(i, j,ntr)^ <e (6.27)

where e is a very small value chosen to test for convergence. When the convergence
criterion is satisfied at all nodes, the values of the target concentrations at iteration
number m (or m * 1) are accepted and used to move forward to the next time step.

Within each iteration, the calculation proceeds across the grid, and Eq. (6.26) is

-.: -,- --^1,'âc

i
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.^^ n il on therhs ofEq. (6.26)lC(i - I' i,n+ 1), C(t + l, i' n -f l), C(i' i -
i),ii'i;randC(i. i-lI,n*l)lcanallbeevaluatedusingtheirvaluesfromiteration

flt-1

C(i,i,tl+l)"':

X (C(i, i, n) * Lt a
c(i + 1, j,n I l)"' ' + c(t - l, j,n * l;nr*1

t*Ltaffi+ffi+t)

[c(i+ 1, j.n-fl:tn t _ C(l - l.7,nf l)"'-rl
l)-u

*D*

-fDv

(Lx)2

c(i, j + l, n I 7)"'-t + C(i, i - l,n * \)',"-l
(ay)2

-u
IC(i + t, j,n) - C(i - l, i.n)1
lT)

C(i + 1, j,n) - zc(i, j,n) + c(i - 1, i, n)
+^t(1 - cY) x i_D,

lDy

(Lx)2

C(i, j + t, n) - 2C(i, j,n) + C(i, j - r' n)

(ay)2 - kC(i, j,n)

(6.26)

(6.28)

This calculation, known as Jacobi iteration, can proceed in any order through the

grid system since all the unknown concentrations at iteration m - I ate computed,

stored, and used in the calculation for iteration m. An alternative approach, the Gauss-

Seidel jteration, uses unknown concentrations that have already been calculated in

iteration ru for the calculation of subsequent unknown concentrations during the same

iteration. To envision this, imagine sequentially sweeping across each row from left to

right, beginning each iteration at the upper left-hand corner (ati : 1, j : I), moving

across the first row until it is completed, then moving to the beginning of the second

row (l : l, j : 2), continuing to the right, and so on, until the full set of unknown

nodes is evaluated. With this order of calculation, values of C (i - l, j , n * 1)'n (from

the column to the left) and C(i, j - l,n * l)* (from the row above) will already

be available when it is time to compute C(i, i,n I I)"'' Why not use them in Eq'
(6.26) instead of the old values of C(i - l, i,n I l)*-1 and C(i, i - I,n * l;''-t
from the previous iteration? If (as we hope!) each iteration brings the concentration
estimates closer to their correct values, the latter values should be more accurate and

allow for more rapid convergence to the correct values. Gauss-Seidel iteration does

indeed allow for more rapid convergence. It has the further advantage thatitis easier
to program since values of the unknown concentrations from the previous iteration no
'l^--^--- - .-s -,^^^ -/: 1 : -^ | 1\m ^^Â /1 /: : 1 -L1\m o.annmnrrfed
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and their tests for convergence are implemented. The resulting Gauss-Seidel
equation is given by:

C(i, j,n + 1)"' :

c(i + t, j,n * l)"'-t + c(i - l, j,n r l)"1

,*Âra (#*ffi*o)
[C(r+ l. j,n-l llat-t -C(,- I. j.r* l)''"1

s ,ur 1
-Lt

X (C(i, j,n) + Lt a ID,

lDy

-u

(Lx)z

c(i, j +l,n*1)''-t +c(i, j -t,n!t)"1
(Ly)z

f c(t + t. j,n\ - c(i - | , j.n\f
L 2^. l

C(l + l, j, n) - zC(i, j, n) + C(i - t, j, n)
+ A/(1 - cY) +D,

lDy

(Lx)2

C(i, j + 1, n) - 2C(i, j, n) + C(i, j - t, n)
- kC(i, j, n)

(Ây)2

This same approach can be used to solve the steady-state model equations. To do

this, note that the working equation has already been modified to isolate C(z, j) on

the lhs fsee Eq. 6.25)1. Equation (6.25) is then written for Gauss-Seidel iteration as

follows:

c(i + t, i1m-r - c(i - 1, j)-
c(i, j)- : l-ul

*r,I

*rrI

c(i + I, j)
2Lx

-1 +c(t-r,i)'"
(Lx)2

c(i, j +1),, 1 + c(i, j - l)*
(Ly)z

l

llt&.&.rl
(6.30)

With any of the iterative solution methods, initial guesses are required for each of

the unknowns. For the steady-state model, these may be estimated by interpolating
between boundary conditions, if they are known. For the dynamic model with implicit
solution, the initial guesses for each time step may be set to the computed values

1
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rterative *Tiî'":ilïJîJî:fi:? î;;î. ""t-ut"' 
for the new time step computed using the

u*pà,n"ri""nniqo.i tu"tt as successive over relaxation (SoR), are available to fur-

. ].-""a the rate of conversion of an iterative solution (Hoffman, 1992,p.56; Wang
thI ï"*ron , lg82,p. 27). With SOR, the change that occurs with each iteration is
uo,i^|"'À.dAu first noting the change, multiplying it by a factor ar (generally between

?Xiii.oi. and adding the product to the previous iteration. A two-step procedure
i y:,i:,;" , nredictor-cort".1o. method) thus results. For example, for modification
(iï:?;;;r:Seidel 

solurion of the steady-state model [Eq. (6.30)], SoR is imple-

ii**t first computing a "predictor" value of C(i, j)''* using Eq. (6'30), then

.omputing the "coreclor" as:

c(i, i)'n : c(i, i)"-1 + rolcli, j)"* - c(i, i)*-'f (6'31)

ThoughconvergenceisgenerallyfasterwithsOR,problemswithovershootingthe
coffect answea 

"un 
o""ur, causing oscillation around the correct answer. A method

,nriïtttir"r decreasing values of ar (decreasing toward 1.0) as m increases can be

i"oli rntr problem oi"u.r. In most situations it is safest to stick with the Gauss-

i'r"iàJ."tnà6, unless the computation time resulting from the iterative solution is

,*restlu"fy large (as may be the case when, as with the implicit dynamic solution'

the iteration is required at each time step)'

6.2.2 Finite Element Methods

A second numerical approach for solving partial differential equations is the use of

finite element methods. Finite element methods originated in the field of solid me-

chanics and are the standard methods for solving structural analysis problems' They

are less widely used than finite difference methods for fluid mechanics and heat and

mass transfer but offer significant advantages for some applications. Finite element

methods are especially useful for problems with inegular geometry, inhomogeneous

properties, anicompiicuted loadings. It is relatively easy to vary the size of the el-

.*ànt, ou", the model domain, whereas grid cell size variations can introduce sig-

nificant complications with finite differences. Finite element methods are also more

accurate and stable than finite difference methods for comparable element and grid

cell sizes.

As discussed in the previous section, finite difference methods are developed

by replacing spatial or àmporal derivatives in a partial differential equation with

differences defined between nodes on a regular rectangular space-time grid. Finite

element methods also start with a discretized domain and produce algebraic equations

from differential equations. However, with finite elements, the value of the state

variable of interest across a small element of the domain is approximated by an

interpolating function, which is usually a polynomial. Elements are regular polygons

in one, twol or three dimensions. Values at the vertices or nodes of each element

are determined to optimally satisfy the partial differential equations that apply to the

system. The solution is assembled over the full domain by requiring that values of

(6.2e)
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:1ïiTïJi:XiïHï* 
rhe edges of adjacent elements match and thar boundqr.y

A description of the main steps required in finite element analysis, with an il-
lustration for the 1D steady-state advection-diffusion equation, is found in the sun-
plemental information for this chapter at www.wiley.com/college/ramaswami. I\4s;e
in-depth presentations of finite element methods are provided in textbooks oeoicateà
to the subject (e.g., Desai, 1979 Wait and Mitchell, 1985; and Zienkiewicz and Tayi
lor, 2000). Bear (1979), Wang and Anderson (1982), andZheng and Benneft (19Ç51
provide accessible introductions to finite elements in the context of groundwater nsw
and contaminant transport modeling; more in-depth presentations are found in (Guy_
man (1970), Guyman et al. (1970), Pinder and Gray (Igjj), Huyakorn and pinder
(1983), and Carey (1995).

6.3 SOLUTTONS TO NONLINEAR SYSTEMS OF EQUATIONS

Section 6.2.1 described the Jacobi and Gauss-siedel methods for solving systems of
linear algebraic equations, as employed for numerical solution of the finite difference
representation of advective-dispersive transport phenomena. Indeed, these and other
matrix inversion techniques are the basic numerical methods for simultaneously solv-
ing any general system oflinear equations. However, linear relationships are often not
adequate to represent real-world systems, particularly when chemical reactions are
involved. Consideration ofchemical equilibria, dependence ofequilibrium constants
and rate constants on temperature (often an exponential relationship), and inclusion
of chemical kinetics of orders greater than 1, introduce a high degree of nonlinearity
into the relationships between different variables in physicochemical systems. This
section describes numerical methods used to solve the systems of nonlinear algebraic
equations that may apply to these problems. As always, for any solution technique
to work, the number of equations must be equal to the number of variables in the
system. Typically, the variables in a system may include the concentrations of var-
ious chemical species involved in reactions, ambient temperature, pressure, and so

forth. Kinetic and equilibrium relationships and charge and mass balances provide
the framework for the nonlinear equations relating these variables to each other. At a

single time step, the multispecies nonlinear system of equations is solved using the

techniques described below.
Before addressing multispecies systems of equations, it is useful to first consider

the Newton-Raphson method for solving a nonlinear equation involving just a single
variable. consider a polynomial equation, /(x), of order greater than 1. Solving this
equation involves finding values of x at which /("r) wilt go to 0, that is, f (x) = 0.

we do not know the roots of this equation a priori, and use an iterative scheme to

approach the roots from an initial guess, xs. rf x were the real root of the equation,

/(x) would be exactly 0. In addition, if the initial guess, -r0, was sufficiently close to

the real root, x, /(x) could be computed from the first derivative f ,(x) evaluated at

xs[:f t(xs)f as shown below, and set to 0:

f (x): f (xù + f'@ù x [x - xs] : Q (6.32)

-l

f (xo)x:xo-ffi (6.33)

h rcality,since we have no a priori knowledge of the value of the roots of the equation,

l" rc3Zl is used iteratively to converge on the roots of the equation f (x) : O,

i^Oi"gwith an initial guess, .re. If we specify each iteration number as ln:
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v/hich, 
uPon rearangement, Yields

f (x^)
xmtl: ** - f,(rà

Fouadon (6.34) is called Newton's method or the Newton-Raphson method for find-

fi tn" toott of nonlinear equations. The method rapidly converges to the solution

Cui ir "o-pu,ationally 
expensive since the exact derivative [/'("r)] needs to be first

deprmined analytically and then evaluated at each iteration. Note that rearrangement

otnq. fe .Z+) yields the discrete definition of the slope /'(-r) when f (x) :0, that is,
-f ,&,,) : IO - f (x^)lllx*+r - x*f . The Newton-Raphson method is closely related

â àrtt.t slope-type iteration methods such as the bisection method and the method of

ftegula Falsi, as illustrated in Figure 6.8'

f(x)

f(x,)

(6.34)

f(xù

Bisection Method: srope = ITH=lor l;.Lli' )

Newton's Merhod: slope = t'tl=19-!l | 
,o, un, x near the root

Figure 6.8 Using the concept of slope in the bisection method where the root, x,n, is con-

verged on from a point .rr to the right and a point.rT to the left, and in the Newton-Raphson

method where the derivative function /'(x) is used to converge toward the real root xe : .r', .
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problems that can arise with the Newton-Raphson method include the preselçu

of an inflection point in the function near the location of the root, which can caus.

divergence fromihe real solution. The solution may oscillate around a local minirnn*

or maximum in the function if one is encountered on the way to the root' The presenqs

of multiple roots in the interval within which iterations are being commenced.can nlro

cause masking of one root by another, that is, depending upon the choice.of the initial

guess .xs, the iolution -uy "onu"tge 
consistently toward one root' missing the other

solution.
Next consider a set of n equations, Fr, Fz, ft, . . . F', involving n variables, 1,,

xz, x3, .. . , xn. The set of equations may be written as:

Fr(xr, xz, )$, . . ., xr) : 0

Fz(xt, xz, x3, . - .' tn) : 0

Fz(xt, xz, x3, . . . , xr) :0 (6'35)

F,(xr, xz, xz, . .., xr) : 0

This set ofequations is solved when the values of (xr, xz, x3' ' ' ' , xn) simultaneously

satisfy Fu : o,for all n shown in Eq. (6.35). If our initial guesses of the solution set

are (.r1,s, x2,0, x3,0, . . . , x,,0),an expression analogous to Eq' (6'32) for the multivari-

ate problem specified in Eq. (6'35) can be written as:

û(xr, xz, xt, ' ' . , x,) : Fr (.rr.o' xz,o, xz'1,

Fz(xr, xz, xz, ' . . , x,) : Fz(xr,o, x2,0, x3,0,

Fz(xr, xz, xt, . . . , x) : Ft(xt,o' xz,o, xs,o,

ôFr ôFt ^
, x,.o) * 

A*, 
ôt' + 

àrrôr, 
+

ôFz ^ âFz 
"

, x,,.6) * 
A", 

ôt, + 6nor, *

âF. aFr -
, x,.o) f ;jôxr + ; -tix2 +dxt of,2

?F' a",, : o
dX,

3F,jôx, : o
dx"

âFrjôx,, :9
dX"

(6,36)

Fu(x1, x2, xj,.. ., x, ) = 4,(xt.o, xz.o"r3.o. ", x,,.ol l f, Oxr + ftU'+ "' ffi 0'" : O

InEq.(6.36), Ex;:(xi-xt,o).Notethesimilaritybetweenthesystemofn equations

in pâs. (6.36) and (6.32), which was wriffen for a single variable. As above, our

first guess may not u" u".y good, so multiple iterations may be required. In matrix

nohtlon, the expansion equation for iteration m + I may be written as follows:

F(x.+r) :F(x*ôx):p11.;*J(x,,)ôx:0 6'31)

wherex - 1x1, x2, ..., x,\r,F : {Fr, F2, "',F,,}r,andôx : {ôx1' 6*2' "'' 6"1.''

wirh ôx; - (x*+t - xi,ài."înematrix J in Eq. (6.37) is known as the Jacobian matrix'

and is defined as:

SOLUTIONS TO NONLINEAR SYSTEMS OF EQUATIONS 235

J(x*) -

I [#]

I t#l
ôF,

(6.38)

(6.4r)

8Ft ôFt

0xn

ôxn

ôFz

[*]

âxt

0Fz

ôxt

i#l ôxz

*.i?,îrliïïï":jî'lîïîîï"Tî:îi;ï:ilîÏï':"fi n"#TJiili;
lyr,.t of linear algebraic equations:

J(x.)[ôx.] - -F(x-) 
(6'39)

Rearangement of Eq' (6'57) Yields

xm+t : x^ - [J(x*))-1 F(x,,) (6'40)

onceagain,notethesimilaritiesbetweentheiterationalgorithmforNewton'smethod
forasinglevariableshowninEq.(6'34)andthatrepresentedinmatrixforminEq.
/6 40) for the multivariate problim. while the matrix representation for multivari-

:i#d;;;r;;, oi 
"quutions 

provides convergence when cerrain matrix con-

straints are met, the evaluation and inversion of the Jacobian matfix can be difficult'

Instead, a modified N"*ton-nuphson method is used for faster computations' In this

method,thepartialderivativematrixissimplifiedandapproximatedbyusingonly
the diagonal terms of the matrix shown in Eq' (6'38)' Thus' the iteration algorithm

becomes

Ft(xt, xz' "' , xn)^
Xl,m+l : Xl,m -

t#l (Xt,Xz, .'X,'),,'

Fu(xt, xz, ... , xn)*
l il,m+l - ^n 'm ôF,

ôx, (Xt,Xz, ..,X^)^

Example 6.3 illustrates the use of the modified Newton-Raphson method for a two-

variable problem, mimicking (for a relatively simple case) some of the chemical

equilibrium equations that are presented in Chapters 2 and 12'
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EXAMPLE 6.3

Consider a reversible reaction in which a chemical species A1 is transformed into
another species A2, with equilibrium constant K:2.8y stoichiometry, it is given

that 2 [A 1] <+ tA2l. The total molar concentration of A introduced into the systerx

is 1 mol/L, initiatly introduced as Al. Hence the two relevant equations linking

the two variables A1 and A2 are

Equilibrium relationship

[A1] + 2lA2l: 1 Mass-balance relationship

Substituting the first equation (tA2l : ztLll\ into the second one, and solving

the resulting quadratic equation, we get the exact solution (to the sixth decimal

placel) as: A1 :0.390388 and A2:0.304806. This indicates that, of 1 mol of
A1 introduced into a l-L reactor, 0.61 mol are converted to A2, yielding 0.305

mol of A2 (due to stoichiometry) with 0.39 mol of A1 remaining in solution.

Now, we shall see if the exact solution can be found by the modified Newton-

Raphson iteration method. To be consistent with the notation used in the discus-

sion of theory, we see that:

Fr(A1, A2) : -2l{ll2 * [A2] : O A\lAAl: -4[A1]

F2(Al, AZ) : [A1] + 2IA2l - I :0 ôF2lâA2 :2

We can begin with an initial guess that A1 : 1 and A2:0, that is, the situation

at the point when the reaction had not yet commenced. The firs|2l iterations are

shown below:

I A2lK-+-2
tAll'

Iteration A1 A2 F1 Fz an/AAt AFI/AA2

I
2

-t

4

5

6

7

8

9
10

11

I
0.5

0.25
0.3'75

0.4375
0.397321
0.37562',1

0.388371

0.395144
0.391055
0.388868

0
0

0.25

0.375
0.3t25
0.28125
0.301339

0.312186
0.305814
0.302428
0.304473

a

-0.5
0.t25
0.09375

-0.07031
-0.03448

0.019148

0.010522

-0.00646
-0.00342

0.002035

0

-0.5
-0.25

0.125
0.0625

-0.04018
-0.02169

0.012744
0.0067'73

-0.00409
-0.00219

-4
a

*l
- 1.5

-1.75
-t.58929
-t.5025r
- 1.55348
* 1.58058

-1.56422
-1.5554'7
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A1 A2 F1 F2 AnlaAt ôk/aA2

l2
I3
t4
t5

t6
IT

18

t9
20

21
1,)

23

24

25

26

27

0.390t'7'7
0.390875

0.390456
0.390232
0.390366
0.390438
0.390395

0.390372
0.390386
0.390393

0.390389
0.390387

0.390388

0.390389

0.390388

0.390388

0.305566

0.304912
0.304562
0.304'772

0.304884
o.30481'7

0.30478 1

0.304802

0.304814

0.304807

0.304803
0.304806

0.304807

0.304806

0.304806
0.304806

0.00109

-0.00066
-0.0003s

0.000209
0.000112

-6.7F-05
-3.6E-05

2.15E-05
1.15E-05

-6.9E-06
-3.78-06

2.28-06
I . 18E-06

-'7.18-01
-3.8E-07

2.268-07

0.001308
0.000698

-0.00042
-0.00022

0.000134

1.t68-05

-4.3E-05
-2.38-05

1.38E-05

7.348-06

-4.48-06
-2.48-06

1.41E-06

7s38-01

-4.5F-07
-2.48-07

- 1.56011

- 1.5635

-t.56182
- 1.56093

-1.5614'7
-1.56t75
- 1.561 58

-r.56149
-t.56t54
-1.56t5'7
- 1.56156

- 1.56155

- 1.s6155

-1.56i55
- I .561s5

- I .56155

2

2

2
2

2

2
2

2

2

2

2

2

2

2

2

2

2
2

2

2
2

2

2

2

2

2
2

Notice that the solution converges to the exact solution within the third decimal

place (Al : 0.390 + 0.001) by the 12th iteration, and to the sixth decimal place by

in"ZOnaiteration. Also note how the iterative solutions oscillate above and below

the true solution in consecutive iterations. This is a feature ofthe slope technique,

in which we are approaching the true solution from the right, then from the left,

anfl so on, as also occurs in the bisection method (Fig. 6.8) for a single variable

nonlinear equation. The solutions obtained with the full Jacobian matrix would

converge with fewer iterations, but with more intensive matrix inversions that

would become increasingly demanding as the number of equations is increased.

Chapter 12 presents applications of nonlinear solution techniques to deter-

mine chemical equilibria involving multiple chemical species participating in

acid-base dissociation, dissolution-precipitation, oxidation-reduction, and sur-

face complexation reactions. Computer packages such as MICROQL (Westall,

1986) and MINTEQ (Allison et al., l99l) implement techniques such as the

Newton-Raphson method and are readily available for solution of a wide ar-

ray of nonlinear equations involving multispecies chemical equilibria in aqueous

systems.

6,4 SUMMARY

Methods for numerically solving four classes of mathematical models have been de-

scribed in this chapter. Numerical integration techniques, such as the Euler-Cauchy
method, the predictor-corrector method, and the Runge-Kutta method are described
in Section 6.1 and can be used to solve chemical mass-balances ODEs with concen-
tration represented as a function of a single variable, typically time. Initial concen-
trations in the system must be known to initiate these integration techniques.

(contfuued)



238 OVERVIEW oF NUMERICAL METHODS IN ENVIRONMENTAL MODELING

Methods for solving partial differential equations, applicable in solving rnurr-
balance differential equations over time and multidimensional space, were p....n,*
in Section 6.2. Section 6.2.1 focused on finite difference methods for solving p5p"*
formulating forward differencing, backward differencing, and central oifferencill
schemes for the spatial derivative, and implicit and explicit methods to step fo.wuri
in time. Finite element methods for solving PDEs were introduced in Section 6.2.2*
Both techniques for solving PDEs require the statement of initial (temporal) qil
(spatial) boundary conditions to initiate the iterations. Techniques for simultaneousln
solving a set of linear algebraic equations are presented in Section 6.2.I as toots 1*
implementing f,nite difference schemes. Solution techniques that address systens
of nonlinear algebraic equations are presented in section 6.3 and are typically uss6
to model complex chemical reactions with multispecies equilibris or higher-orde1
kinetics.

The numerical methods briefly presented here form the foundation of many corl-
puter codes and simulation packages designed to model contaminant transport and
fate in the environment. In the applications presented in this chapter, all the input
parameters to the models are assumed to be "single valued," that is, they have fixed,
or "point-estimate" values assumed to be known a priori by the user. Single-valued,
point-estimate input parameter values, while easy to incorporate into models, are not
often representative of our understanding of the real world. In particular, modelers
must also consider systematic (seasonal or spatial) variability in model parameter val-
ues, random fluctuations in these values with no known systematic underlying cause,

as well as uncertainty in model parameters associated with a lack of a priori knowl-
edge ofthe system. To address this need, Chapter 7 presents probabilistic techniques
for the incorporation of random variables and random processes into environmental
models.

7 Overview of Probabilistic Methods
and Tools for Modeling

finvironmental systems are highly variable in their properlies and response to inputs.

Furthermore, there is a great deal ofuncertainty about these properties, future inputs,

und ,.6ponr"t. In this chapter we introduce the basic tools of probability used to

nodel variable and uncertain environmental systems.

Variability refers to the inherent differences in environmental properties that occur

'ver 
space and time and from one sample to another (e.g., the differences in exposure,

susceptibility, and risk that occur between one individual and another in a target

oopulation). Uncertainry reflects a lack of knowledge of environmental processes

unà ptop"rti"t. White many of the same tools of probability and statistics can be

applied to chancterize variability and uncertainty, the need to carefully distinguish

between them is widely recognized (e.g., Bogen and Spear, 1987; Burmaster and

Wlson, 1996; Cullen and Frey, 1999), and we are careful to do so in the applications

that follow.
In Section 1.5.1 we charucterized deterministic models as those that calculate a

single value for each model output, in contrast to stochastic models that produce a

distribution of values for each prediction. While probabilistic methods provide the

basic building blocks for stochastic models, the distinction between deterministic

and stochastic models is not always clear-cut. For example, the random motions of
fluid elements described in Sections 5.3 and 5.5 that lead to Fickian and non-Fickian
dispersion are typically aggregated over many fluid elements and treated as determin-
istic processes at the continuum scale. Similarly, chemical transformations that are

stochastic at the scale ofindividual particles and molecules are usually aggregated, us-
ing kinetic models to provide deterministic representations of bulk reaction processes.

Individual chemical and fluid elements can be statistically simulated to yield the same
results as deterministic process models for transport and reaction; this is the basis for
lhe population balance method that tracks discrete pollutant particles through the
environment (Patterson et al., 1981; Koch and Prickett, 1993;Visser, 1997).

Probability models describe the likelihood, or probability, of different outcomes
0r events. A random variable is a quantity that can take on different values for a
variety of reasons, but with no specific mechanism or underlying cause that allows
an outcome to be predicted with certainty. Instead, the variable is described by a
probabiliry distibution .function. When the quantity is ordered in space and/or time,
the probability model must also describe the nature of this ordering. Such quantities
are refened to as random processes. We begin this chapter by describing models for


